File: index.rst

package info (click to toggle)
scalene 1.5.54-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,980 kB
  • sloc: cpp: 22,870; python: 14,493; javascript: 12,297; ansic: 817; makefile: 196; sh: 45
file content (868 lines) | stat: -rw-r--r-- 24,219 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
.. figure::
   https://github.com/plasma-umass/scalene/raw/master/docs/scalene-icon-white.png
   :alt: scalene

   scalene

Scalene: a Python CPU+GPU+memory profiler with AI-powered optimization proposals
================================================================================

by `Emery Berger <https://emeryberger.com>`__, `Sam
Stern <https://samstern.me/>`__, and `Juan Altmayer
Pizzorno <https://github.com/jaltmayerpizzorno>`__.

|Scalene community Slack|\ `Scalene community
Slack <https://join.slack.com/t/scaleneprofil-jge3234/shared_invite/zt-110vzrdck-xJh5d4gHnp5vKXIjYD3Uwg>`__

|PyPI Latest Release|\ |Anaconda-Server Badge| |Downloads|\ |Anaconda
downloads| |image1| |Python versions|\ |Visual Studio Code Extension
version| |License|

.. figure::
   https://github.com/plasma-umass/scalene/raw/master/docs/Ozsvald-tweet.png
   :alt: Ozsvald tweet

   Ozsvald tweet

(tweet from Ian Ozsvald, author of `High Performance
Python <https://smile.amazon.com/High-Performance-Python-Performant-Programming/dp/1492055026/ref=sr_1_1?crid=texbooks>`__)

.. figure::
   https://github.com/plasma-umass/scalene/raw/master/docs/semantic-scholar-success.png
   :alt: Semantic Scholar success story

   Semantic Scholar success story

**Scalene web-based user interface:**
http://plasma-umass.org/scalene-gui/

About Scalene
-------------

Scalene is a high-performance CPU, GPU *and* memory profiler for Python
that does a number of things that other Python profilers do not and
cannot do. It runs orders of magnitude faster than many other profilers
while delivering far more detailed information. It is also the first
profiler ever to incorporate AI-powered proposed optimizations.

AI-powered optimization suggestions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

   **Note**

   To enable AI-powered optimization suggestions, you need to enter an
   `OpenAI key <https://openai.com/api/>`__ in the box under “Advanced
   options”. *Your account will need to have a positive balance for this
   to work* (check your balance at
   https://platform.openai.com/account/usage).

Once you’ve entered your OpenAI key (see above), click on the lightning
bolt (⚡) beside any line or the explosion (💥) for an entire region of
code to generate a proposed optimization. Click on a proposed
optimization to copy it to the clipboard.

You can click as many times as you like on the lightning bolt or
explosion, and it will generate different suggested optimizations. Your
mileage may vary, but in some cases, the suggestions are quite
impressive (e.g., order-of-magnitude improvements).

Quick Start
~~~~~~~~~~~

Installing Scalene:
^^^^^^^^^^^^^^^^^^^

.. code:: console

   python3 -m pip install -U scalene

or

.. code:: console

   conda install -c conda-forge scalene

Using Scalene:
^^^^^^^^^^^^^^

After installing Scalene, you can use Scalene at the command line, or as
a Visual Studio Code extension.

.. raw:: html

   <details>

.. raw:: html

   <summary>

Using the Scalene VS Code Extension:

.. raw:: html

   </summary>

First, install the Scalene extension from the VS Code Marketplace or by
searching for it within VS Code by typing Command-Shift-X (Mac) or
Ctrl-Shift-X (Windows). Once that’s installed, click Command-Shift-P or
Ctrl-Shift-P to open the Command Palette. Then select “Scalene:
AI-powered profiling…” (you can start typing Scalene and it will pop up
if it’s installed). Run that and, assuming your code runs for at least a
second, a Scalene profile will appear in a webview.

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

Commonly used command-line options:

.. raw:: html

   </summary>

.. code:: console

   scalene your_prog.py                             # full profile (outputs to web interface)
   python3 -m scalene your_prog.py                  # equivalent alternative

   scalene --cli your_prog.py                       # use the command-line only (no web interface)

   scalene --cpu your_prog.py                       # only profile CPU
   scalene --cpu --gpu your_prog.py                 # only profile CPU and GPU
   scalene --cpu --gpu --memory your_prog.py        # profile everything (same as no options)

   scalene --reduced-profile your_prog.py           # only profile lines with significant usage
   scalene --profile-interval 5.0 your_prog.py      # output a new profile every five seconds

   scalene (Scalene options) --- your_prog.py (...) # use --- to tell Scalene to ignore options after that point
   scalene --help                                   # lists all options

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

Using Scalene programmatically in your code:

.. raw:: html

   </summary>

Invoke using ``scalene`` as above and then:

.. code:: python

   from scalene import scalene_profiler

   # Turn profiling on
   scalene_profiler.start()

   # your code

   # Turn profiling off
   scalene_profiler.stop()

.. code:: python

   from scalene.scalene_profiler import enable_profiling

   with enable_profiling():
       # do something

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

Using Scalene to profile only specific functions via @profile:

.. raw:: html

   </summary>

Just preface any functions you want to profile with the ``@profile``
decorator and run it with Scalene:

.. code:: python

   # do not import profile!

   @profile
   def slow_function():
       import time
       time.sleep(3)

.. raw:: html

   </details>

Web-based GUI
^^^^^^^^^^^^^

Scalene has both a CLI and a web-based GUI `(demo
here) <https://scalene-gui.github.io/scalene-gui/>`__.

By default, once Scalene has profiled your program, it will open a tab
in a web browser with an interactive user interface (all processing is
done locally). Hover over bars to see breakdowns of CPU and memory
consumption, and click on underlined column headers to sort the columns.
The generated file ``profile.html`` is self-contained and can be saved
for later use.

|Scalene web GUI|

Scalene Overview
----------------

Scalene talk (PyCon US 2021)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`This talk <https://youtu.be/5iEf-_7mM1k>`__ presented at PyCon 2021
walks through Scalene’s advantages and how to use it to debug the
performance of an application (and provides some technical details on
its internals). We highly recommend watching this video!

|Scalene presentation at PyCon 2021|

Fast and Accurate
~~~~~~~~~~~~~~~~~

-  Scalene is **fast**. It uses sampling instead of instrumentation or
   relying on Python’s tracing facilities. Its overhead is typically no
   more than 10-20% (and often less).

-  Scalene is **accurate**. We tested CPU profiler accuracy and found
   that Scalene is among the most accurate profilers, correctly
   measuring time taken.

.. figure::
   https://github.com/plasma-umass/scalene/raw/master/docs/cpu-accuracy-comparison.png
   :alt: Profiler accuracy

   Profiler accuracy

-  Scalene performs profiling **at the line level** *and* **per
   function**, pointing to the functions and the specific lines of code
   responsible for the execution time in your program.

CPU profiling
~~~~~~~~~~~~~

-  Scalene **separates out time spent in Python from time in native
   code** (including libraries). Most Python programmers aren’t going to
   optimize the performance of native code (which is usually either in
   the Python implementation or external libraries), so this helps
   developers focus their optimization efforts on the code they can
   actually improve.
-  Scalene **highlights hotspots** (code accounting for significant
   percentages of CPU time or memory allocation) in red, making them
   even easier to spot.
-  Scalene also separates out **system time**, making it easy to find
   I/O bottlenecks.

GPU profiling
~~~~~~~~~~~~~

-  Scalene reports **GPU time** (currently limited to NVIDIA-based
   systems).

Memory profiling
~~~~~~~~~~~~~~~~

-  Scalene **profiles memory usage**. In addition to tracking CPU usage,
   Scalene also points to the specific lines of code responsible for
   memory growth. It accomplishes this via an included specialized
   memory allocator.
-  Scalene separates out the percentage of **memory consumed by Python
   code vs. native code**.
-  Scalene produces **per-line memory profiles**.
-  Scalene **identifies lines with likely memory leaks**.
-  Scalene **profiles copying volume**, making it easy to spot
   inadvertent copying, especially due to crossing Python/library
   boundaries (e.g., accidentally converting ``numpy`` arrays into
   Python arrays, and vice versa).

Other features
~~~~~~~~~~~~~~

-  Scalene can produce **reduced profiles** (via ``--reduced-profile``)
   that only report lines that consume more than 1% of CPU or perform at
   least 100 allocations.
-  Scalene supports ``@profile`` decorators to profile only specific
   functions.
-  When Scalene is profiling a program launched in the background (via
   ``&``), you can **suspend and resume profiling**.

Comparison to Other Profilers
=============================

Performance and Features
------------------------

Below is a table comparing the **performance and features** of various
profilers to Scalene.

.. figure::
   https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/images/profiler-comparison.png
   :alt: Performance and feature comparison

   Performance and feature comparison

-  **Slowdown**: the slowdown when running a benchmark from the
   Pyperformance suite. Green means less than 2x overhead. Scalene’s
   overhead is just a 35% slowdown.

Scalene has all of the following features, many of which only Scalene
supports:

-  **Lines or functions**: does the profiler report information only for
   entire functions, or for every line – Scalene does both.
-  **Unmodified Code**: works on unmodified code.
-  **Threads**: supports Python threads.
-  **Multiprocessing**: supports use of the ``multiprocessing`` library
   – *Scalene only*
-  **Python vs. C time**: breaks out time spent in Python vs. native
   code (e.g., libraries) – *Scalene only*
-  **System time**: breaks out system time (e.g., sleeping or performing
   I/O) – *Scalene only*
-  **Profiles memory**: reports memory consumption per line / function
-  **GPU**: reports time spent on an NVIDIA GPU (if present) – *Scalene
   only*
-  **Memory trends**: reports memory use over time per line / function –
   *Scalene only*
-  **Copy volume**: reports megabytes being copied per second – *Scalene
   only*
-  **Detects leaks**: automatically pinpoints lines responsible for
   likely memory leaks – *Scalene only*

Output
------

If you include the ``--cli`` option, Scalene prints annotated source
code for the program being profiled (as text, JSON (``--json``), or HTML
(``--html``)) and any modules it uses in the same directory or
subdirectories (you can optionally have it ``--profile-all`` and only
include files with at least a ``--cpu-percent-threshold`` of time). Here
is a snippet from ``pystone.py``.

.. figure::
   https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/images/sample-profile-pystone.png
   :alt: Example profile

   Example profile

-  **Memory usage at the top**: Visualized by “sparklines”, memory
   consumption over the runtime of the profiled code.
-  **“Time Python”**: How much time was spent in Python code.
-  **“native”**: How much time was spent in non-Python code (e.g.,
   libraries written in C/C++).
-  **“system”**: How much time was spent in the system (e.g., I/O).
-  **“GPU”**: (not shown here) How much time spent on the GPU, if your
   system has an NVIDIA GPU installed.
-  **“Memory Python”**: How much of the memory allocation happened on
   the Python side of the code, as opposed to in non-Python code (e.g.,
   libraries written in C/C++).
-  **“net”**: Positive net memory numbers indicate total memory
   allocation in megabytes; negative net memory numbers indicate memory
   reclamation.
-  **“timeline / %”**: Visualized by “sparklines”, memory consumption
   generated by this line over the program runtime, and the percentages
   of total memory activity this line represents.
-  **“Copy (MB/s)”**: The amount of megabytes being copied per second
   (see “About Scalene”).

Scalene
-------

The following command runs Scalene on a provided example program.

.. code:: console

   scalene test/testme.py

.. raw:: html

   <details>

.. raw:: html

   <summary>

Click to see all Scalene’s options (available by running with –help)

.. raw:: html

   </summary>

.. code:: console

       % scalene --help
        usage: scalene [-h] [--outfile OUTFILE] [--html] [--reduced-profile]
                       [--profile-interval PROFILE_INTERVAL] [--cpu-only]
                       [--profile-all] [--profile-only PROFILE_ONLY]
                       [--use-virtual-time]
                       [--cpu-percent-threshold CPU_PERCENT_THRESHOLD]
                       [--cpu-sampling-rate CPU_SAMPLING_RATE]
                       [--malloc-threshold MALLOC_THRESHOLD]
        
        Scalene: a high-precision CPU and memory profiler.
        https://github.com/plasma-umass/scalene
        
        command-line:
           % scalene [options] yourprogram.py
        or
           % python3 -m scalene [options] yourprogram.py
        
        in Jupyter, line mode:
           %scrun [options] statement
        
        in Jupyter, cell mode:
           %%scalene [options]
           code...
           code...
        
        optional arguments:
          -h, --help            show this help message and exit
          --outfile OUTFILE     file to hold profiler output (default: stdout)
          --html                output as HTML (default: text)
          --reduced-profile     generate a reduced profile, with non-zero lines only (default: False)
          --profile-interval PROFILE_INTERVAL
                                output profiles every so many seconds (default: inf)
          --cpu-only            only profile CPU time (default: profile CPU, memory, and copying)
          --profile-all         profile all executed code, not just the target program (default: only the target program)
          --profile-only PROFILE_ONLY
                                profile only code in filenames that contain the given strings, separated by commas (default: no restrictions)
          --use-virtual-time    measure only CPU time, not time spent in I/O or blocking (default: False)
          --cpu-percent-threshold CPU_PERCENT_THRESHOLD
                                only report profiles with at least this percent of CPU time (default: 1%)
          --cpu-sampling-rate CPU_SAMPLING_RATE
                                CPU sampling rate (default: every 0.01s)
          --malloc-threshold MALLOC_THRESHOLD
                                only report profiles with at least this many allocations (default: 100)
        
        When running Scalene in the background, you can suspend/resume profiling
        for the process ID that Scalene reports. For example:
        
           % python3 -m scalene [options] yourprogram.py &
         Scalene now profiling process 12345
           to suspend profiling: python3 -m scalene.profile --off --pid 12345
           to resume profiling:  python3 -m scalene.profile --on  --pid 12345

.. raw:: html

   </details>

Scalene with Jupyter
~~~~~~~~~~~~~~~~~~~~

.. raw:: html

   <details>

.. raw:: html

   <summary>

Instructions for installing and using Scalene with Jupyter notebooks

.. raw:: html

   </summary>

`This
notebook <https://nbviewer.jupyter.org/github/plasma-umass/scalene/blob/master/docs/scalene-demo.ipynb>`__
illustrates the use of Scalene in Jupyter.

Installation:

.. code:: console

   !pip install scalene
   %load_ext scalene

Line mode:

.. code:: console

   %scrun [options] statement

Cell mode:

.. code:: console

   %%scalene [options]
   code...
   code...

.. raw:: html

   </details>

Installation
------------

.. raw:: html

   <details open>

.. raw:: html

   <summary>

Using pip (Mac OS X, Linux, Windows, and WSL2)

.. raw:: html

   </summary>

Scalene is distributed as a ``pip`` package and works on Mac OS X, Linux
(including Ubuntu in `Windows
WSL2 <https://docs.microsoft.com/en-us/windows/wsl/wsl2-index>`__) and
(with limitations) Windows platforms.

   **Note**

   The Windows version currently only supports CPU and GPU profiling,
   but not memory or copy profiling.

You can install it as follows:

.. code:: console

     % pip install -U scalene

or

.. code:: console

     % python3 -m pip install -U scalene

You may need to install some packages first.

See https://stackoverflow.com/a/19344978/4954434 for full instructions
for all Linux flavors.

For Ubuntu/Debian:

.. code:: console

     % sudo apt install git python3-all-dev

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

Using conda (Mac OS X, Linux, Windows, and WSL2)

.. raw:: html

   </summary>

.. code:: console

     % conda install -c conda-forge scalene

Scalene is distributed as a ``conda`` package and works on Mac OS X,
Linux (including Ubuntu in `Windows
WSL2 <https://docs.microsoft.com/en-us/windows/wsl/wsl2-index>`__) and
(with limitations) Windows platforms.

   **Note**

   The Windows version currently only supports CPU and GPU profiling,
   but not memory or copy profiling.

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

On ArchLinux

.. raw:: html

   </summary>

You can install Scalene on Arch Linux via the `AUR
package <https://aur.archlinux.org/packages/python-scalene-git/>`__. Use
your favorite AUR helper, or manually download the ``PKGBUILD`` and run
``makepkg -cirs`` to build. Note that this will place ``libscalene.so``
in ``/usr/lib``; modify the below usage instructions accordingly.

.. raw:: html

   </details>

Frequently Asked Questions
==========================

.. raw:: html

   <details>

.. raw:: html

   <summary>

Can I use Scalene with PyTest?

.. raw:: html

   </summary>

**A:** Yes! You can run it as follows (for example):

``python3 -m scalene --- -m pytest your_test.py``

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

Is there any way to get shorter profiles or do more targeted profiling?

.. raw:: html

   </summary>

**A:** Yes! There are several options:

1. Use ``--reduced-profile`` to include only lines and files with
   memory/CPU/GPU activity.
2. Use ``--profile-only`` to include only filenames containing specific
   strings (as in, ``--profile-only foo,bar,baz``).
3. Decorate functions of interest with ``@profile`` to have Scalene
   report *only* those functions.
4. Turn profiling on and off programmatically by importing Scalene
   profiler (``from scalene import scalene_profiler``) and then turning
   profiling on and off via ``scalene_profiler.start()`` and
   ``scalene_profiler.stop()``. By default, Scalene runs with profiling
   on, so to delay profiling until desired, use the ``--off``
   command-line option (``python3 -m scalene --off yourprogram.py``).

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

How do I run Scalene in PyCharm?

.. raw:: html

   </summary>

**A:** In PyCharm, you can run Scalene at the command line by opening
the terminal at the bottom of the IDE and running a Scalene command
(e.g., ``python -m scalene <your program>``). Use the options ``--cli``,
``--html``, and ``--outfile <your output.html>`` to generate an HTML
file that you can then view in the IDE.

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

How do I use Scalene with Django?

.. raw:: html

   </summary>

**A:** Pass in the ``--noreload`` option (see
https://github.com/plasma-umass/scalene/issues/178).

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

Does Scalene work with gevent/Greenlets?

.. raw:: html

   </summary>

**A:** Yes! Put the following code in the beginning of your program, or
modify the call to ``monkey.patch_all`` as below:

.. code:: python

   from gevent import monkey
   monkey.patch_all(thread=False)

.. raw:: html

   </details>

.. raw:: html

   <details>

.. raw:: html

   <summary>

How do I use Scalene with PyTorch on the Mac?

.. raw:: html

   </summary>

**A:** Scalene works with PyTorch version 1.5.1 on Mac OS X. There’s a
bug in newer versions of PyTorch
(https://github.com/pytorch/pytorch/issues/57185) that interferes with
Scalene (discussion here:
https://github.com/plasma-umass/scalene/issues/110), but only on Macs.

.. raw:: html

   </details>

Technical Information
=====================

For details about how Scalene works, please see the following paper,
which won the Jay Lepreau Best Paper Award at `OSDI
2023 <https://www.usenix.org/conference/osdi23/presentation/berger>`__:
`Triangulating Python Performance Issues with
Scalene <https://arxiv.org/pdf/2212.07597>`__. (Note that this paper
does not include information about the AI-driven proposed
optimizations.)

.. raw:: html

   <details>

.. raw:: html

   <summary>

To cite Scalene in an academic paper, please use the following:

.. raw:: html

   </summary>

.. code:: latex

   @inproceedings{288540,
   author = {Emery D. Berger and Sam Stern and Juan Altmayer Pizzorno},
   title = {Triangulating Python Performance Issues with {S}calene},
   booktitle = {{17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23)}},
   year = {2023},
   isbn = {978-1-939133-34-2},
   address = {Boston, MA},
   pages = {51--64},
   url = {https://www.usenix.org/conference/osdi23/presentation/berger},
   publisher = {USENIX Association},
   month = jul
   }

.. raw:: html

   </details>

Success Stories
===============

If you use Scalene to successfully debug a performance problem, please
`add a comment to this
issue <https://github.com/plasma-umass/scalene/issues/58>`__!

Acknowledgements
================

Logo created by `Sophia
Berger <https://www.linkedin.com/in/sophia-berger/>`__.

This material is based upon work supported by the National Science
Foundation under Grant No. 1955610. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation.

.. |Scalene community Slack| image:: https://github.com/plasma-umass/scalene/raw/master/docs/images/slack-logo.png
   :target: https://join.slack.com/t/scaleneprofil-jge3234/shared_invite/zt-110vzrdck-xJh5d4gHnp5vKXIjYD3Uwg
.. |PyPI Latest Release| image:: https://img.shields.io/pypi/v/scalene.svg
   :target: https://pypi.org/project/scalene/
.. |Anaconda-Server Badge| image:: https://img.shields.io/conda/v/conda-forge/scalene
   :target: https://anaconda.org/conda-forge/scalene
.. |Downloads| image:: https://static.pepy.tech/badge/scalene
   :target: https://pepy.tech/project/scalene
.. |Anaconda downloads| image:: https://img.shields.io/conda/d/conda-forge/scalene?logo=conda
   :target: https://anaconda.org/conda-forge/scalene
.. |image1| image:: https://static.pepy.tech/badge/scalene/month
   :target: https://pepy.tech/project/scalene
.. |Python versions| image:: https://img.shields.io/pypi/pyversions/scalene.svg?style=flat-square
.. |Visual Studio Code Extension version| image:: https://img.shields.io/visual-studio-marketplace/v/emeryberger.scalene?logo=visualstudiocode
   :target: https://marketplace.visualstudio.com/items?itemName=EmeryBerger.scalene
.. |License| image:: https://img.shields.io/github/license/plasma-umass/scalene
.. |Scalene web GUI| image:: https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/scalene-gui-example.png
   :target: https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/scalene-gui-example-full.png
.. |Scalene presentation at PyCon 2021| image:: https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/images/scalene-video-img.png
   :target: https://youtu.be/5iEf-_7mM1k