1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
.. figure::
https://github.com/plasma-umass/scalene/raw/master/docs/scalene-icon-white.png
:alt: scalene
scalene
Scalene: a Python CPU+GPU+memory profiler with AI-powered optimization proposals
================================================================================
by `Emery Berger <https://emeryberger.com>`__, `Sam
Stern <https://samstern.me/>`__, and `Juan Altmayer
Pizzorno <https://github.com/jaltmayerpizzorno>`__.
|Scalene community Slack|\ `Scalene community
Slack <https://join.slack.com/t/scaleneprofil-jge3234/shared_invite/zt-110vzrdck-xJh5d4gHnp5vKXIjYD3Uwg>`__
|PyPI Latest Release|\ |Anaconda-Server Badge| |Downloads|\ |Anaconda
downloads| |image1| |Python versions|\ |Visual Studio Code Extension
version| |License|
.. figure::
https://github.com/plasma-umass/scalene/raw/master/docs/Ozsvald-tweet.png
:alt: Ozsvald tweet
Ozsvald tweet
(tweet from Ian Ozsvald, author of `High Performance
Python <https://smile.amazon.com/High-Performance-Python-Performant-Programming/dp/1492055026/ref=sr_1_1?crid=texbooks>`__)
.. figure::
https://github.com/plasma-umass/scalene/raw/master/docs/semantic-scholar-success.png
:alt: Semantic Scholar success story
Semantic Scholar success story
**Scalene web-based user interface:**
http://plasma-umass.org/scalene-gui/
About Scalene
-------------
Scalene is a high-performance CPU, GPU *and* memory profiler for Python
that does a number of things that other Python profilers do not and
cannot do. It runs orders of magnitude faster than many other profilers
while delivering far more detailed information. It is also the first
profiler ever to incorporate AI-powered proposed optimizations.
AI-powered optimization suggestions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note**
To enable AI-powered optimization suggestions, you need to enter an
`OpenAI key <https://openai.com/api/>`__ in the box under “Advanced
options”. *Your account will need to have a positive balance for this
to work* (check your balance at
https://platform.openai.com/account/usage).
Once you’ve entered your OpenAI key (see above), click on the lightning
bolt (⚡) beside any line or the explosion (💥) for an entire region of
code to generate a proposed optimization. Click on a proposed
optimization to copy it to the clipboard.
You can click as many times as you like on the lightning bolt or
explosion, and it will generate different suggested optimizations. Your
mileage may vary, but in some cases, the suggestions are quite
impressive (e.g., order-of-magnitude improvements).
Quick Start
~~~~~~~~~~~
Installing Scalene:
^^^^^^^^^^^^^^^^^^^
.. code:: console
python3 -m pip install -U scalene
or
.. code:: console
conda install -c conda-forge scalene
Using Scalene:
^^^^^^^^^^^^^^
After installing Scalene, you can use Scalene at the command line, or as
a Visual Studio Code extension.
.. raw:: html
<details>
.. raw:: html
<summary>
Using the Scalene VS Code Extension:
.. raw:: html
</summary>
First, install the Scalene extension from the VS Code Marketplace or by
searching for it within VS Code by typing Command-Shift-X (Mac) or
Ctrl-Shift-X (Windows). Once that’s installed, click Command-Shift-P or
Ctrl-Shift-P to open the Command Palette. Then select “Scalene:
AI-powered profiling…” (you can start typing Scalene and it will pop up
if it’s installed). Run that and, assuming your code runs for at least a
second, a Scalene profile will appear in a webview.
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
Commonly used command-line options:
.. raw:: html
</summary>
.. code:: console
scalene your_prog.py # full profile (outputs to web interface)
python3 -m scalene your_prog.py # equivalent alternative
scalene --cli your_prog.py # use the command-line only (no web interface)
scalene --cpu your_prog.py # only profile CPU
scalene --cpu --gpu your_prog.py # only profile CPU and GPU
scalene --cpu --gpu --memory your_prog.py # profile everything (same as no options)
scalene --reduced-profile your_prog.py # only profile lines with significant usage
scalene --profile-interval 5.0 your_prog.py # output a new profile every five seconds
scalene (Scalene options) --- your_prog.py (...) # use --- to tell Scalene to ignore options after that point
scalene --help # lists all options
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
Using Scalene programmatically in your code:
.. raw:: html
</summary>
Invoke using ``scalene`` as above and then:
.. code:: python
from scalene import scalene_profiler
# Turn profiling on
scalene_profiler.start()
# your code
# Turn profiling off
scalene_profiler.stop()
.. code:: python
from scalene.scalene_profiler import enable_profiling
with enable_profiling():
# do something
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
Using Scalene to profile only specific functions via @profile:
.. raw:: html
</summary>
Just preface any functions you want to profile with the ``@profile``
decorator and run it with Scalene:
.. code:: python
# do not import profile!
@profile
def slow_function():
import time
time.sleep(3)
.. raw:: html
</details>
Web-based GUI
^^^^^^^^^^^^^
Scalene has both a CLI and a web-based GUI `(demo
here) <https://scalene-gui.github.io/scalene-gui/>`__.
By default, once Scalene has profiled your program, it will open a tab
in a web browser with an interactive user interface (all processing is
done locally). Hover over bars to see breakdowns of CPU and memory
consumption, and click on underlined column headers to sort the columns.
The generated file ``profile.html`` is self-contained and can be saved
for later use.
|Scalene web GUI|
Scalene Overview
----------------
Scalene talk (PyCon US 2021)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`This talk <https://youtu.be/5iEf-_7mM1k>`__ presented at PyCon 2021
walks through Scalene’s advantages and how to use it to debug the
performance of an application (and provides some technical details on
its internals). We highly recommend watching this video!
|Scalene presentation at PyCon 2021|
Fast and Accurate
~~~~~~~~~~~~~~~~~
- Scalene is **fast**. It uses sampling instead of instrumentation or
relying on Python’s tracing facilities. Its overhead is typically no
more than 10-20% (and often less).
- Scalene is **accurate**. We tested CPU profiler accuracy and found
that Scalene is among the most accurate profilers, correctly
measuring time taken.
.. figure::
https://github.com/plasma-umass/scalene/raw/master/docs/cpu-accuracy-comparison.png
:alt: Profiler accuracy
Profiler accuracy
- Scalene performs profiling **at the line level** *and* **per
function**, pointing to the functions and the specific lines of code
responsible for the execution time in your program.
CPU profiling
~~~~~~~~~~~~~
- Scalene **separates out time spent in Python from time in native
code** (including libraries). Most Python programmers aren’t going to
optimize the performance of native code (which is usually either in
the Python implementation or external libraries), so this helps
developers focus their optimization efforts on the code they can
actually improve.
- Scalene **highlights hotspots** (code accounting for significant
percentages of CPU time or memory allocation) in red, making them
even easier to spot.
- Scalene also separates out **system time**, making it easy to find
I/O bottlenecks.
GPU profiling
~~~~~~~~~~~~~
- Scalene reports **GPU time** (currently limited to NVIDIA-based
systems).
Memory profiling
~~~~~~~~~~~~~~~~
- Scalene **profiles memory usage**. In addition to tracking CPU usage,
Scalene also points to the specific lines of code responsible for
memory growth. It accomplishes this via an included specialized
memory allocator.
- Scalene separates out the percentage of **memory consumed by Python
code vs. native code**.
- Scalene produces **per-line memory profiles**.
- Scalene **identifies lines with likely memory leaks**.
- Scalene **profiles copying volume**, making it easy to spot
inadvertent copying, especially due to crossing Python/library
boundaries (e.g., accidentally converting ``numpy`` arrays into
Python arrays, and vice versa).
Other features
~~~~~~~~~~~~~~
- Scalene can produce **reduced profiles** (via ``--reduced-profile``)
that only report lines that consume more than 1% of CPU or perform at
least 100 allocations.
- Scalene supports ``@profile`` decorators to profile only specific
functions.
- When Scalene is profiling a program launched in the background (via
``&``), you can **suspend and resume profiling**.
Comparison to Other Profilers
=============================
Performance and Features
------------------------
Below is a table comparing the **performance and features** of various
profilers to Scalene.
.. figure::
https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/images/profiler-comparison.png
:alt: Performance and feature comparison
Performance and feature comparison
- **Slowdown**: the slowdown when running a benchmark from the
Pyperformance suite. Green means less than 2x overhead. Scalene’s
overhead is just a 35% slowdown.
Scalene has all of the following features, many of which only Scalene
supports:
- **Lines or functions**: does the profiler report information only for
entire functions, or for every line – Scalene does both.
- **Unmodified Code**: works on unmodified code.
- **Threads**: supports Python threads.
- **Multiprocessing**: supports use of the ``multiprocessing`` library
– *Scalene only*
- **Python vs. C time**: breaks out time spent in Python vs. native
code (e.g., libraries) – *Scalene only*
- **System time**: breaks out system time (e.g., sleeping or performing
I/O) – *Scalene only*
- **Profiles memory**: reports memory consumption per line / function
- **GPU**: reports time spent on an NVIDIA GPU (if present) – *Scalene
only*
- **Memory trends**: reports memory use over time per line / function –
*Scalene only*
- **Copy volume**: reports megabytes being copied per second – *Scalene
only*
- **Detects leaks**: automatically pinpoints lines responsible for
likely memory leaks – *Scalene only*
Output
------
If you include the ``--cli`` option, Scalene prints annotated source
code for the program being profiled (as text, JSON (``--json``), or HTML
(``--html``)) and any modules it uses in the same directory or
subdirectories (you can optionally have it ``--profile-all`` and only
include files with at least a ``--cpu-percent-threshold`` of time). Here
is a snippet from ``pystone.py``.
.. figure::
https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/images/sample-profile-pystone.png
:alt: Example profile
Example profile
- **Memory usage at the top**: Visualized by “sparklines”, memory
consumption over the runtime of the profiled code.
- **“Time Python”**: How much time was spent in Python code.
- **“native”**: How much time was spent in non-Python code (e.g.,
libraries written in C/C++).
- **“system”**: How much time was spent in the system (e.g., I/O).
- **“GPU”**: (not shown here) How much time spent on the GPU, if your
system has an NVIDIA GPU installed.
- **“Memory Python”**: How much of the memory allocation happened on
the Python side of the code, as opposed to in non-Python code (e.g.,
libraries written in C/C++).
- **“net”**: Positive net memory numbers indicate total memory
allocation in megabytes; negative net memory numbers indicate memory
reclamation.
- **“timeline / %”**: Visualized by “sparklines”, memory consumption
generated by this line over the program runtime, and the percentages
of total memory activity this line represents.
- **“Copy (MB/s)”**: The amount of megabytes being copied per second
(see “About Scalene”).
Scalene
-------
The following command runs Scalene on a provided example program.
.. code:: console
scalene test/testme.py
.. raw:: html
<details>
.. raw:: html
<summary>
Click to see all Scalene’s options (available by running with –help)
.. raw:: html
</summary>
.. code:: console
% scalene --help
usage: scalene [-h] [--outfile OUTFILE] [--html] [--reduced-profile]
[--profile-interval PROFILE_INTERVAL] [--cpu-only]
[--profile-all] [--profile-only PROFILE_ONLY]
[--use-virtual-time]
[--cpu-percent-threshold CPU_PERCENT_THRESHOLD]
[--cpu-sampling-rate CPU_SAMPLING_RATE]
[--malloc-threshold MALLOC_THRESHOLD]
Scalene: a high-precision CPU and memory profiler.
https://github.com/plasma-umass/scalene
command-line:
% scalene [options] yourprogram.py
or
% python3 -m scalene [options] yourprogram.py
in Jupyter, line mode:
%scrun [options] statement
in Jupyter, cell mode:
%%scalene [options]
code...
code...
optional arguments:
-h, --help show this help message and exit
--outfile OUTFILE file to hold profiler output (default: stdout)
--html output as HTML (default: text)
--reduced-profile generate a reduced profile, with non-zero lines only (default: False)
--profile-interval PROFILE_INTERVAL
output profiles every so many seconds (default: inf)
--cpu-only only profile CPU time (default: profile CPU, memory, and copying)
--profile-all profile all executed code, not just the target program (default: only the target program)
--profile-only PROFILE_ONLY
profile only code in filenames that contain the given strings, separated by commas (default: no restrictions)
--use-virtual-time measure only CPU time, not time spent in I/O or blocking (default: False)
--cpu-percent-threshold CPU_PERCENT_THRESHOLD
only report profiles with at least this percent of CPU time (default: 1%)
--cpu-sampling-rate CPU_SAMPLING_RATE
CPU sampling rate (default: every 0.01s)
--malloc-threshold MALLOC_THRESHOLD
only report profiles with at least this many allocations (default: 100)
When running Scalene in the background, you can suspend/resume profiling
for the process ID that Scalene reports. For example:
% python3 -m scalene [options] yourprogram.py &
Scalene now profiling process 12345
to suspend profiling: python3 -m scalene.profile --off --pid 12345
to resume profiling: python3 -m scalene.profile --on --pid 12345
.. raw:: html
</details>
Scalene with Jupyter
~~~~~~~~~~~~~~~~~~~~
.. raw:: html
<details>
.. raw:: html
<summary>
Instructions for installing and using Scalene with Jupyter notebooks
.. raw:: html
</summary>
`This
notebook <https://nbviewer.jupyter.org/github/plasma-umass/scalene/blob/master/docs/scalene-demo.ipynb>`__
illustrates the use of Scalene in Jupyter.
Installation:
.. code:: console
!pip install scalene
%load_ext scalene
Line mode:
.. code:: console
%scrun [options] statement
Cell mode:
.. code:: console
%%scalene [options]
code...
code...
.. raw:: html
</details>
Installation
------------
.. raw:: html
<details open>
.. raw:: html
<summary>
Using pip (Mac OS X, Linux, Windows, and WSL2)
.. raw:: html
</summary>
Scalene is distributed as a ``pip`` package and works on Mac OS X, Linux
(including Ubuntu in `Windows
WSL2 <https://docs.microsoft.com/en-us/windows/wsl/wsl2-index>`__) and
(with limitations) Windows platforms.
**Note**
The Windows version currently only supports CPU and GPU profiling,
but not memory or copy profiling.
You can install it as follows:
.. code:: console
% pip install -U scalene
or
.. code:: console
% python3 -m pip install -U scalene
You may need to install some packages first.
See https://stackoverflow.com/a/19344978/4954434 for full instructions
for all Linux flavors.
For Ubuntu/Debian:
.. code:: console
% sudo apt install git python3-all-dev
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
Using conda (Mac OS X, Linux, Windows, and WSL2)
.. raw:: html
</summary>
.. code:: console
% conda install -c conda-forge scalene
Scalene is distributed as a ``conda`` package and works on Mac OS X,
Linux (including Ubuntu in `Windows
WSL2 <https://docs.microsoft.com/en-us/windows/wsl/wsl2-index>`__) and
(with limitations) Windows platforms.
**Note**
The Windows version currently only supports CPU and GPU profiling,
but not memory or copy profiling.
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
On ArchLinux
.. raw:: html
</summary>
You can install Scalene on Arch Linux via the `AUR
package <https://aur.archlinux.org/packages/python-scalene-git/>`__. Use
your favorite AUR helper, or manually download the ``PKGBUILD`` and run
``makepkg -cirs`` to build. Note that this will place ``libscalene.so``
in ``/usr/lib``; modify the below usage instructions accordingly.
.. raw:: html
</details>
Frequently Asked Questions
==========================
.. raw:: html
<details>
.. raw:: html
<summary>
Can I use Scalene with PyTest?
.. raw:: html
</summary>
**A:** Yes! You can run it as follows (for example):
``python3 -m scalene --- -m pytest your_test.py``
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
Is there any way to get shorter profiles or do more targeted profiling?
.. raw:: html
</summary>
**A:** Yes! There are several options:
1. Use ``--reduced-profile`` to include only lines and files with
memory/CPU/GPU activity.
2. Use ``--profile-only`` to include only filenames containing specific
strings (as in, ``--profile-only foo,bar,baz``).
3. Decorate functions of interest with ``@profile`` to have Scalene
report *only* those functions.
4. Turn profiling on and off programmatically by importing Scalene
profiler (``from scalene import scalene_profiler``) and then turning
profiling on and off via ``scalene_profiler.start()`` and
``scalene_profiler.stop()``. By default, Scalene runs with profiling
on, so to delay profiling until desired, use the ``--off``
command-line option (``python3 -m scalene --off yourprogram.py``).
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
How do I run Scalene in PyCharm?
.. raw:: html
</summary>
**A:** In PyCharm, you can run Scalene at the command line by opening
the terminal at the bottom of the IDE and running a Scalene command
(e.g., ``python -m scalene <your program>``). Use the options ``--cli``,
``--html``, and ``--outfile <your output.html>`` to generate an HTML
file that you can then view in the IDE.
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
How do I use Scalene with Django?
.. raw:: html
</summary>
**A:** Pass in the ``--noreload`` option (see
https://github.com/plasma-umass/scalene/issues/178).
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
Does Scalene work with gevent/Greenlets?
.. raw:: html
</summary>
**A:** Yes! Put the following code in the beginning of your program, or
modify the call to ``monkey.patch_all`` as below:
.. code:: python
from gevent import monkey
monkey.patch_all(thread=False)
.. raw:: html
</details>
.. raw:: html
<details>
.. raw:: html
<summary>
How do I use Scalene with PyTorch on the Mac?
.. raw:: html
</summary>
**A:** Scalene works with PyTorch version 1.5.1 on Mac OS X. There’s a
bug in newer versions of PyTorch
(https://github.com/pytorch/pytorch/issues/57185) that interferes with
Scalene (discussion here:
https://github.com/plasma-umass/scalene/issues/110), but only on Macs.
.. raw:: html
</details>
Technical Information
=====================
For details about how Scalene works, please see the following paper,
which won the Jay Lepreau Best Paper Award at `OSDI
2023 <https://www.usenix.org/conference/osdi23/presentation/berger>`__:
`Triangulating Python Performance Issues with
Scalene <https://arxiv.org/pdf/2212.07597>`__. (Note that this paper
does not include information about the AI-driven proposed
optimizations.)
.. raw:: html
<details>
.. raw:: html
<summary>
To cite Scalene in an academic paper, please use the following:
.. raw:: html
</summary>
.. code:: latex
@inproceedings{288540,
author = {Emery D. Berger and Sam Stern and Juan Altmayer Pizzorno},
title = {Triangulating Python Performance Issues with {S}calene},
booktitle = {{17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23)}},
year = {2023},
isbn = {978-1-939133-34-2},
address = {Boston, MA},
pages = {51--64},
url = {https://www.usenix.org/conference/osdi23/presentation/berger},
publisher = {USENIX Association},
month = jul
}
.. raw:: html
</details>
Success Stories
===============
If you use Scalene to successfully debug a performance problem, please
`add a comment to this
issue <https://github.com/plasma-umass/scalene/issues/58>`__!
Acknowledgements
================
Logo created by `Sophia
Berger <https://www.linkedin.com/in/sophia-berger/>`__.
This material is based upon work supported by the National Science
Foundation under Grant No. 1955610. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation.
.. |Scalene community Slack| image:: https://github.com/plasma-umass/scalene/raw/master/docs/images/slack-logo.png
:target: https://join.slack.com/t/scaleneprofil-jge3234/shared_invite/zt-110vzrdck-xJh5d4gHnp5vKXIjYD3Uwg
.. |PyPI Latest Release| image:: https://img.shields.io/pypi/v/scalene.svg
:target: https://pypi.org/project/scalene/
.. |Anaconda-Server Badge| image:: https://img.shields.io/conda/v/conda-forge/scalene
:target: https://anaconda.org/conda-forge/scalene
.. |Downloads| image:: https://static.pepy.tech/badge/scalene
:target: https://pepy.tech/project/scalene
.. |Anaconda downloads| image:: https://img.shields.io/conda/d/conda-forge/scalene?logo=conda
:target: https://anaconda.org/conda-forge/scalene
.. |image1| image:: https://static.pepy.tech/badge/scalene/month
:target: https://pepy.tech/project/scalene
.. |Python versions| image:: https://img.shields.io/pypi/pyversions/scalene.svg?style=flat-square
.. |Visual Studio Code Extension version| image:: https://img.shields.io/visual-studio-marketplace/v/emeryberger.scalene?logo=visualstudiocode
:target: https://marketplace.visualstudio.com/items?itemName=EmeryBerger.scalene
.. |License| image:: https://img.shields.io/github/license/plasma-umass/scalene
.. |Scalene web GUI| image:: https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/scalene-gui-example.png
:target: https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/scalene-gui-example-full.png
.. |Scalene presentation at PyCon 2021| image:: https://raw.githubusercontent.com/plasma-umass/scalene/master/docs/images/scalene-video-img.png
:target: https://youtu.be/5iEf-_7mM1k
|