1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/*
The target memory information array (storage of matches).
Copyright (C) 2009 Eli Dupree <elidupree(a)charter.net>
Copyright (C) 2010 WANG Lu <coolwanglu(a)gmail.com>
Copyright (C) 2015 Sebastian Parschauer <s.parschauer@gmx.de>
This file is part of libscanmem.
This library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TARGETMEM_H
#define TARGETMEM_H
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <stdbool.h>
#include "value.h"
#include "show_message.h"
/* Public structs */
/* Single match struct */
typedef struct {
uint8_t old_value;
match_flags match_info;
} old_value_and_match_info;
/* Array that contains a consecutive (in memory) sequence of matches (= swath).
- the first_byte_in_child pointer refers to locations in the child,
it cannot be followed except using ptrace()
- the number_of_bytes refers to the number of bytes in the child
process's memory that are covered, not the number of bytes the struct
takes up. It's the length of data. */
typedef struct __attribute__((packed,aligned(sizeof(old_value_and_match_info)))) {
void *first_byte_in_child;
size_t number_of_bytes;
old_value_and_match_info data[0];
} matches_and_old_values_swath;
/* Master matches array, smartly resized, contains swaths.
Both `bytes` values refer to real struct bytes this time. */
typedef struct {
size_t bytes_allocated;
size_t max_needed_bytes;
matches_and_old_values_swath swaths[0];
} matches_and_old_values_array;
/* Location of a match in a matches_and_old_values_array */
typedef struct {
matches_and_old_values_swath *swath;
size_t index;
} match_location;
/* Public functions */
matches_and_old_values_array *allocate_array (matches_and_old_values_array *array,
size_t max_bytes);
matches_and_old_values_array *null_terminate (matches_and_old_values_array *array,
matches_and_old_values_swath *swath);
/* for printable text representation */
void data_to_printable_string (char *buf, int buf_length,
matches_and_old_values_swath *swath,
size_t index, int string_length);
/* for bytearray representation */
void data_to_bytearray_text (char *buf, int buf_length,
matches_and_old_values_swath *swath,
size_t index, int bytearray_length);
match_location nth_match (matches_and_old_values_array *matches, size_t n);
/* deletes matches in [start, end) and resizes the matches array */
matches_and_old_values_array *
delete_in_address_range (matches_and_old_values_array *array,
unsigned long *num_matches,
void *start_address, void *end_address);
/* The following functions are called in the hot scanning path and were moved
to this header from the .c file so that they could be inlined */
static inline size_t
index_of_last_element (matches_and_old_values_swath *swath)
{
return swath->number_of_bytes - 1;
}
static inline void *
remote_address_of_nth_element (matches_and_old_values_swath *swath, size_t n)
{
return swath->first_byte_in_child + n;
}
static inline void *
remote_address_of_last_element (matches_and_old_values_swath *swath)
{
return (remote_address_of_nth_element(swath, index_of_last_element(swath)));
}
static inline void *
local_address_beyond_nth_element (matches_and_old_values_swath *swath, size_t n)
{
return &(swath->data[n + 1]);
}
static inline void *
local_address_beyond_last_element (matches_and_old_values_swath *swath)
{
return (local_address_beyond_nth_element(swath, index_of_last_element(swath)));
}
static inline matches_and_old_values_array *
allocate_enough_to_reach (matches_and_old_values_array *array,
void *last_byte_to_reach_plus_one,
matches_and_old_values_swath **swath_pointer_to_correct)
{
size_t bytes_needed = last_byte_to_reach_plus_one - (void *)array;
if (bytes_needed <= array->bytes_allocated) {
return array;
} else {
matches_and_old_values_array *original_location = array;
/* allocate twice as much each time,
so we don't have to do it too often */
size_t bytes_to_allocate = array->bytes_allocated;
while (bytes_to_allocate < bytes_needed)
bytes_to_allocate *= 2;
show_debug("to_allocate %ld, max %ld\n", bytes_to_allocate,
array->max_needed_bytes);
/* sometimes we know an absolute max that we will need */
if (array->max_needed_bytes < bytes_to_allocate) {
assert(array->max_needed_bytes >= bytes_needed);
bytes_to_allocate = array->max_needed_bytes;
}
if (!(array = realloc(array, bytes_to_allocate)))
return NULL;
array->bytes_allocated = bytes_to_allocate;
/* Put the swath pointer back where it should be, if needed.
We cast everything to void pointers in this line to make
sure the math works out. */
if (swath_pointer_to_correct) {
(*swath_pointer_to_correct) = (matches_and_old_values_swath *)
(((void *)(*swath_pointer_to_correct)) +
((void *)array - (void *)original_location));
}
return array;
}
}
/* returns a pointer to the swath to which the element was added -
i.e. the last swath in the array after the operation */
static inline matches_and_old_values_swath *
add_element (matches_and_old_values_array **array,
matches_and_old_values_swath *swath,
void *remote_address,
uint8_t new_byte,
match_flags new_flags)
{
if (swath->number_of_bytes == 0) {
assert(swath->first_byte_in_child == NULL);
/* we have to overwrite this as a new swath */
*array = allocate_enough_to_reach(*array, (void *)swath +
sizeof(matches_and_old_values_swath) +
sizeof(old_value_and_match_info), &swath);
swath->first_byte_in_child = remote_address;
} else {
size_t local_index_excess =
remote_address - remote_address_of_last_element(swath);
size_t local_address_excess =
local_index_excess * sizeof(old_value_and_match_info);
size_t needed_size_for_a_new_swath =
sizeof(matches_and_old_values_swath) +
sizeof(old_value_and_match_info);
if (local_address_excess >= needed_size_for_a_new_swath) {
/* It is more memory-efficient to start a new swath.
* The equal case is decided for a new swath, so that
* later we don't needlessly iterate through a bunch
* of empty values */
*array = allocate_enough_to_reach(*array,
local_address_beyond_last_element(swath) +
needed_size_for_a_new_swath, &swath);
swath = local_address_beyond_last_element(swath);
swath->first_byte_in_child = remote_address;
swath->number_of_bytes = 0;
} else {
/* It is more memory-efficient to write over the intervening
space with null values */
*array = allocate_enough_to_reach(*array,
local_address_beyond_last_element(swath) +
local_address_excess, &swath);
switch (local_index_excess) {
case 1:
/* do nothing, the new value is right after the old */
break;
case 2:
memset(local_address_beyond_last_element(swath), 0,
sizeof(old_value_and_match_info));
break;
default:
/* slow due to unknown size to be zeroed */
memset(local_address_beyond_last_element(swath), 0,
local_address_excess - sizeof(old_value_and_match_info));
break;
}
swath->number_of_bytes += local_index_excess - 1;
}
}
/* add me */
old_value_and_match_info *dataptr = local_address_beyond_last_element(swath);
dataptr->old_value = new_byte;
dataptr->match_info = new_flags;
++swath->number_of_bytes;
return swath;
}
/* only at most sizeof(int64_t) bytes will be read,
if more bytes are needed (e.g. bytearray),
read them separately (for performance) */
static inline value_t
data_to_val_aux (const matches_and_old_values_swath *swath,
size_t index, size_t swath_length)
{
uint i;
value_t val;
size_t max_bytes = swath_length - index;
/* Init all possible flags in a single go.
* Also init length to the maximum possible value */
val.flags = 0xffffu;
/* NOTE: This does the right thing for VLT because the flags are in
* the same order as the number representation (for both endians), so
* that the zeroing of a flag does not change useful bits of `length`. */
if (max_bytes > 8) max_bytes = 8;
if (max_bytes < 8) val.flags &= ~flags_64b;
if (max_bytes < 4) val.flags &= ~flags_32b;
if (max_bytes < 2) val.flags &= ~flags_16b;
if (max_bytes < 1) val.flags = flags_empty;
for (i = 0; i < max_bytes; ++i) {
/* Both uint8_t, no explicit casting needed */
val.bytes[i] = swath->data[index + i].old_value;
}
/* Truncate to the old flags, which are stored with the first matched byte */
val.flags &= swath->data[index].match_info;
return val;
}
static inline value_t
data_to_val (const matches_and_old_values_swath *swath, size_t index)
{
return data_to_val_aux(swath, index, swath->number_of_bytes);
}
#endif /* TARGETMEM_H */
|