1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*
Simple routines for working with the value_t data structure.
Copyright (C) 2006,2007,2009 Tavis Ormandy <taviso@sdf.lonestar.org>
Copyright (C) 2009 Eli Dupree <elidupree@charter.net>
Copyright (C) 2009,2010 WANG Lu <coolwanglu@gmail.com>
Copyright (C) 2015 Sebastian Parschauer <s.parschauer@gmx.de>
This file is part of libscanmem.
This library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <limits.h>
#include <assert.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <errno.h>
#include <inttypes.h> /* for fixed-width formatters */
#include "value.h"
#include "show_message.h"
void valtostr(const value_t *val, char *str, size_t n)
{
char buf[128];
int np = 0;
#define FLAG_MACRO(bytes, string) \
(val->flags & flag_u##bytes##b && val->flags & flag_s##bytes##b) ? (string " ") : \
(val->flags & flag_u##bytes##b) ? (string "u ") : \
(val->flags & flag_s##bytes##b) ? (string "s ") : ""
/* set the flags */
np = snprintf(buf, sizeof(buf), "[%s%s%s%s%s%s]",
FLAG_MACRO(64, "I64"),
FLAG_MACRO(32, "I32"),
FLAG_MACRO(16, "I16"),
FLAG_MACRO(8, "I8"),
(val->flags & flag_f64b) ? "F64 " : "",
(val->flags & flag_f32b) ? "F32 " : "");
/* handle having no type at all */
if (np <= 2) {
show_debug("BUG: No type\n");
goto err;
}
if (val->flags & flag_u64b) np = snprintf(str, n, "%" PRIu64 ", %s", get_u64b(val), buf);
else if (val->flags & flag_s64b) np = snprintf(str, n, "%" PRId64 ", %s", get_s64b(val), buf);
else if (val->flags & flag_u32b) np = snprintf(str, n, "%" PRIu32 ", %s", get_u32b(val), buf);
else if (val->flags & flag_s32b) np = snprintf(str, n, "%" PRId32 ", %s", get_s32b(val), buf);
else if (val->flags & flag_u16b) np = snprintf(str, n, "%" PRIu16 ", %s", get_u16b(val), buf);
else if (val->flags & flag_s16b) np = snprintf(str, n, "%" PRId16 ", %s", get_s16b(val), buf);
else if (val->flags & flag_u8b) np = snprintf(str, n, "%" PRIu8 ", %s", get_u8b(val), buf);
else if (val->flags & flag_s8b) np = snprintf(str, n, "%" PRId8 ", %s", get_s8b(val), buf);
else if (val->flags & flag_f64b) np = snprintf(str, n, "%lg, %s", get_f64b(val), buf);
else if (val->flags & flag_f32b) np = snprintf(str, n, "%g, %s", get_f32b(val), buf);
else {
show_debug("BUG: No formatting found\n");
goto err;
}
if (np <= 0 || np >= (n - 1))
goto err;
return;
err:
/* always print a value and a type to not crash front-ends */
strncpy(str, "unknown, [unknown]", n);
}
void valcpy(value_t * dst, const value_t * src)
{
memcpy(dst, src, sizeof(value_t));
return;
}
/* dst.flags must be set beforehand. Prefer setting floats to ints */
void uservalue2value(value_t *dst, const uservalue_t *src)
{
/* Zero whole value union, in case high bytes won't be set */
dst->uint64_value = 0;
if (dst->flags & flag_f64b) set_f64b(dst, get_f64b(src));
else if (dst->flags & flag_u64b) set_u64b(dst, get_u64b(src));
else if (dst->flags & flag_s64b) set_s64b(dst, get_s64b(src));
else if (dst->flags & flag_f32b) set_f32b(dst, get_f32b(src));
else if (dst->flags & flag_u32b) set_u32b(dst, get_u32b(src));
else if (dst->flags & flag_s32b) set_s32b(dst, get_s32b(src));
else if (dst->flags & flag_u16b) set_u16b(dst, get_u16b(src));
else if (dst->flags & flag_s16b) set_s16b(dst, get_s16b(src));
else if (dst->flags & flag_u8b) set_u8b (dst, get_u8b(src));
else if (dst->flags & flag_s8b) set_s8b (dst, get_s8b(src));
else assert(false);
}
/* parse bytearray, it will allocate the arrays itself, then needs to be free'd by `free_uservalue()` */
bool parse_uservalue_bytearray(char *const *argv, unsigned argc, uservalue_t *val)
{
int i,j;
uint8_t *bytes_array = malloc(argc*sizeof(uint8_t));
wildcard_t *wildcards_array = malloc(argc*sizeof(wildcard_t));
if (bytes_array == NULL || wildcards_array == NULL)
{
show_error("memory allocation for bytearray failed.\n");
goto err;
}
const char *cur_str;
char *endptr;
for(i = 0; i < argc; ++i)
{
/* get current string */
cur_str = argv[i];
/* test its length */
for(j = 0; (j < 3) && (cur_str[j]); ++j) {}
if (j != 2) /* length is not 2 */
goto err;
if (strcmp(cur_str, "??") == 0)
{
wildcards_array[i] = WILDCARD;
bytes_array[i] = 0x00;
}
else
{
/* parse as hex integer */
uint8_t cur_byte = (uint8_t)strtoul(cur_str, &endptr, 16);
if (*endptr != '\0')
goto err;
wildcards_array[i] = FIXED;
bytes_array[i] = cur_byte;
}
}
/* everything is ok */
val->bytearray_value = bytes_array;
val->wildcard_value = wildcards_array;
val->flags = argc;
return true;
err:
if (bytes_array) free(bytes_array);
if (wildcards_array) free(wildcards_array);
zero_uservalue(val);
return false;
}
bool parse_uservalue_number(const char *nptr, uservalue_t * val)
{
if (parse_uservalue_int(nptr, val))
{
val->flags |= flags_float;
if (val->flags & flag_s64b) {
val->float32_value = (float) val->int64_value;
val->float64_value = (double) val->int64_value;
}
else {
val->float32_value = (float) val->uint64_value;
val->float64_value = (double) val->uint64_value;
}
return true;
}
else if(parse_uservalue_float(nptr, val))
{
double num = val->float64_value;
if (num >= 0 && num <= UINT8_MAX) { val->flags |= flag_u8b; set_u8b(val, (uint8_t)num); }
if (num >= INT8_MIN && num <= INT8_MAX) { val->flags |= flag_s8b; set_s8b(val, (int8_t)num); }
if (num >= 0 && num <= UINT16_MAX) { val->flags |= flag_u16b; set_u16b(val, (uint16_t)num); }
if (num >= INT16_MIN && num <= INT16_MAX) { val->flags |= flag_s16b; set_s16b(val, (int16_t)num); }
if (num >= 0 && num <= UINT32_MAX) { val->flags |= flag_u32b; set_u32b(val, (uint32_t)num); }
if (num >= INT32_MIN && num <= INT32_MAX) { val->flags |= flag_s32b; set_s32b(val, (int32_t)num); }
if (num >= 0 && num <= UINT64_MAX) { val->flags |= flag_u64b; set_u64b(val, (uint64_t)num); }
if (num >= INT64_MIN && num <= INT64_MAX) { val->flags |= flag_s64b; set_s64b(val, (int64_t)num); }
return true;
}
return false;
}
bool parse_uservalue_int(const char *nptr, uservalue_t * val)
{
int64_t snum;
bool valid_sint;
uint64_t unum;
bool valid_uint;
char *endptr;
assert(nptr != NULL);
assert(val != NULL);
zero_uservalue(val);
/* skip past any whitespace */
while (isspace(*nptr))
++nptr;
/* parse it as signed int */
errno = 0;
snum = strtoll(nptr, &endptr, 0);
valid_sint = (errno == 0) && (*endptr == '\0');
/* parse it as unsigned int */
errno = 0;
unum = strtoull(nptr, &endptr, 0);
valid_uint = (*nptr != '-') && (errno == 0) && (*endptr == '\0');
if (!valid_sint && !valid_uint)
return false;
/* determine correct flags */
if (valid_uint && unum <= UINT8_MAX) { val->flags |= flag_u8b; set_u8b(val, (uint8_t)unum); }
if (valid_sint && snum >= INT8_MIN && snum <= INT8_MAX) { val->flags |= flag_s8b; set_s8b(val, (int8_t)snum); }
if (valid_uint && unum <= UINT16_MAX) { val->flags |= flag_u16b; set_u16b(val, (uint16_t)unum); }
if (valid_sint && snum >= INT16_MIN && snum <= INT16_MAX) { val->flags |= flag_s16b; set_s16b(val, (int16_t)snum); }
if (valid_uint && unum <= UINT32_MAX) { val->flags |= flag_u32b; set_u32b(val, (uint32_t)unum); }
if (valid_sint && snum >= INT32_MIN && snum <= INT32_MAX) { val->flags |= flag_s32b; set_s32b(val, (int32_t)snum); }
if (valid_uint && unum <= UINT64_MAX) { val->flags |= flag_u64b; set_u64b(val, (uint64_t)unum); }
if (valid_sint && snum >= INT64_MIN && snum <= INT64_MAX) { val->flags |= flag_s64b; set_s64b(val, (int64_t)snum); }
return true;
}
bool parse_uservalue_float(const char *nptr, uservalue_t * val)
{
double num;
char *endptr;
assert(nptr);
assert(val);
zero_uservalue(val);
while (isspace(*nptr))
++nptr;
errno = 0;
num = strtod(nptr, &endptr);
if ((errno != 0) || (*endptr != '\0'))
return false;
/* I'm not sure how to distinguish between float and double, but I guess it's not necessary here */
val->flags |= flags_float;
val->float32_value = (float) num;
val->float64_value = num;
return true;
}
void free_uservalue(uservalue_t *uval)
{
/* bytearray arrays are dynamically allocated and have to be freed, strings are not */
if (uval->bytearray_value)
free((void*)uval->bytearray_value);
if (uval->wildcard_value)
free((void*)uval->wildcard_value);
}
|