File: boolean.py

package info (click to toggle)
scap-security-guide 0.1.76-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 110,644 kB
  • sloc: xml: 241,883; sh: 73,777; python: 32,527; makefile: 27
file content (1506 lines) | stat: -rw-r--r-- 51,444 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
"""
Boolean expressions algebra.

This module defines a Boolean algebra over the set {TRUE, FALSE} with boolean
variables called Symbols and the boolean functions AND, OR, NOT.

Some basic logic comparison is supported: two expressions can be
compared for equivalence or containment. Furthermore you can simplify
an expression and obtain its normal form.

You can create expressions in Python using familiar boolean operators
or parse expressions from strings. The parsing can be extended with
your own tokenizer.  You can also customize how expressions behave and
how they are presented.

For extensive documentation look either into the docs directory or view it
online, at https://booleanpy.readthedocs.org/en/latest/.

Copyright (c) 2009-2020 Sebastian Kraemer, basti.kr@gmail.com and others
SPDX-License-Identifier: BSD-2-Clause
"""

from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function

import inspect
import itertools
from operator import and_ as and_operator
from operator import or_ as or_operator

# Python 2 and 3
try:
    basestring  # NOQA
except NameError:
    basestring = str  # NOQA

# Python 2 and 3
try:
    # Python 2
    reduce  # NOQA
except NameError:
    # Python 3
    from functools import reduce  # NOQA

# Set to True to enable tracing for parsing
TRACE_PARSE = False

# Token types for standard operators and parens
TOKEN_AND = 1
TOKEN_OR = 2
TOKEN_NOT = 3
TOKEN_LPAR = 4
TOKEN_RPAR = 5
TOKEN_TRUE = 6
TOKEN_FALSE = 7
TOKEN_SYMBOL = 8

TOKEN_TYPES = {
    TOKEN_AND: 'AND',
    TOKEN_OR: 'OR',
    TOKEN_NOT: 'NOT',
    TOKEN_LPAR: '(',
    TOKEN_RPAR: ')',
    TOKEN_TRUE: 'TRUE',
    TOKEN_FALSE: 'FALSE',
    TOKEN_SYMBOL: 'SYMBOL',
}

# parsing error code and messages
PARSE_UNKNOWN_TOKEN = 1
PARSE_UNBALANCED_CLOSING_PARENS = 2
PARSE_INVALID_EXPRESSION = 3
PARSE_INVALID_NESTING = 4
PARSE_INVALID_SYMBOL_SEQUENCE = 5
PARSE_INVALID_OPERATOR_SEQUENCE = 6

PARSE_ERRORS = {
    PARSE_UNKNOWN_TOKEN: 'Unknown token',
    PARSE_UNBALANCED_CLOSING_PARENS: 'Unbalanced parenthesis',
    PARSE_INVALID_EXPRESSION: 'Invalid expression',
    PARSE_INVALID_NESTING: 'Invalid expression nesting such as (AND xx)',
    PARSE_INVALID_SYMBOL_SEQUENCE: 'Invalid symbols sequence such as (A B)',
    PARSE_INVALID_OPERATOR_SEQUENCE: 'Invalid operator sequence without symbols such as AND OR or OR OR',
}


class ParseError(Exception):
    """
    Raised when the parser or tokenizer encounters a syntax error. Instances of
    this class have attributes token_type, token_string, position, error_code to
    access the details of the error. str() of the exception instance returns a
    formatted message.
    """

    def __init__(self, token_type=None, token_string='', position=-1, error_code=0):
        self.token_type = token_type
        self.token_string = token_string
        self.position = position
        self.error_code = error_code

    def __str__(self, *args, **kwargs):
        emsg = PARSE_ERRORS.get(self.error_code, 'Unknown parsing error')

        tstr = ''
        if self.token_string:
            tstr = ' for token: "%s"' % self.token_string

        pos = ''
        if self.position > 0:
            pos = ' at position: %d' % self.position

        return '{emsg}{tstr}{pos}'.format(**locals())


class BooleanAlgebra(object):
    """
    An algebra is defined by:
    - the types of its operations and Symbol.
    - the tokenizer used when parsing expressions from strings.

    This class also serves as a base class for all boolean expressions,
    including base elements, functions and variable symbols.
    """

    def __init__(self, TRUE_class=None, FALSE_class=None, Symbol_class=None, Function_class=None,
                 NOT_class=None, AND_class=None, OR_class=None,
                 allowed_in_token=('.', ':', '_')):
        """
        The types for TRUE, FALSE, NOT, AND, OR and Symbol define the boolean
        algebra elements, operations and Symbol variable. They default to the
        standard classes if not provided.

        You can customize an algebra by providing alternative subclasses of the
        standard types.
        """
        # TRUE and FALSE base elements are algebra-level "singleton" instances
        self.TRUE = TRUE_class or _TRUE
        self.TRUE = self.TRUE()

        self.FALSE = FALSE_class or _FALSE
        self.FALSE = self.FALSE()

        # they cross-reference each other
        self.TRUE.dual = self.FALSE
        self.FALSE.dual = self.TRUE

        # boolean operation types, defaulting to the standard types
        self.NOT = NOT_class or NOT
        self.AND = AND_class or AND
        self.OR = OR_class or OR

        # class used for Symbols and Functions
        self.Symbol = Symbol_class or Symbol
        self.Function = Function_class or Function

        tf_nao = {
            'TRUE': self.TRUE,
            'FALSE': self.FALSE,
            'NOT': self.NOT,
            'AND': self.AND,
            'OR': self.OR,
            'Symbol': self.Symbol,
            'Function': self.Function  # TODO: Do we need it?
        }

        # setup cross references such that all algebra types and
        # objects hold a named attribute for every other types and
        # objects, including themselves.
        for obj in tf_nao.values():
            for name, value in tf_nao.items():
                setattr(obj, name, value)

        # Set the set of characters allowed in tokens
        self.allowed_in_token = allowed_in_token

    def definition(self):
        """
        Return a tuple of this algebra defined elements and types as:
        (TRUE, FALSE, NOT, AND, OR, Symbol)
        """
        return self.TRUE, self.FALSE, self.NOT, self.AND, self.OR, self.Symbol

    def symbols(self, *args):
        """
        Return a tuple of symbols building a new Symbol from each argument.
        """
        return tuple(map(self.Symbol, args))

    def parse(self, expr, simplify=False):
        """
        Return a boolean expression parsed from `expr` either a unicode string
        or tokens iterable.

        Optionally simplify the expression if `simplify` is True.

        Raise ParseError on errors.

        If `expr` is a string, the standard `tokenizer` is used for tokenization
        and the algebra configured Symbol type is used to create Symbol
        instances from Symbol tokens.

        If `expr` is an iterable, it should contain 3-tuples of: (token_type,
        token_string, token_position). In this case, the `token_type` can be
        a Symbol instance or one of the TOKEN_* constant types.
        See the `tokenize()` method for detailed specification.
        """

        precedence = {self.NOT: 5, self.AND: 10, self.OR: 15, TOKEN_LPAR: 20}

        if isinstance(expr, basestring):
            tokenized = self.tokenize(expr)
        else:
            tokenized = iter(expr)

        if TRACE_PARSE:
            tokenized = list(tokenized)
            print('tokens:')
            for t in tokenized:
                print(t)
            tokenized = iter(tokenized)

        # the abstract syntax tree for this expression that will be build as we
        # process tokens
        # the first two items are None
        # symbol items are appended to this structure
        ast = [None, None]

        def is_sym(_t):
            return isinstance(_t, Symbol) or _t in (TOKEN_TRUE, TOKEN_FALSE, TOKEN_SYMBOL)

        def is_operator(_t):
            return _t in (TOKEN_AND, TOKEN_OR)

        prev_token = None
        for token_type, token_string, token_position in tokenized:
            if TRACE_PARSE:
                print('\nprocessing token_type:', repr(token_type), 'token_string:', repr(token_string), 'token_position:', repr(token_position))

            if prev_token:
                prev_token_type, _prev_token_string, _prev_token_position = prev_token
                if TRACE_PARSE:
                    print('  prev_token:', repr(prev_token))

                if is_sym(prev_token_type) and (is_sym(token_type)):  # or token_type == TOKEN_LPAR) :
                    raise ParseError(token_type, token_string, token_position, PARSE_INVALID_SYMBOL_SEQUENCE)

                if is_operator(prev_token_type) and (is_operator(token_type) or token_type == TOKEN_RPAR):
                    raise ParseError(token_type, token_string, token_position, PARSE_INVALID_OPERATOR_SEQUENCE)

            else:
                if is_operator(token_type):
                    raise ParseError(token_type, token_string, token_position, PARSE_INVALID_OPERATOR_SEQUENCE)

            if token_type == TOKEN_SYMBOL:
                ast.append(self.Symbol(token_string))
                if TRACE_PARSE:
                    print(' ast: token_type is TOKEN_SYMBOL: append new symbol', repr(ast))

            elif isinstance(token_type, Symbol):
                ast.append(token_type)
                if TRACE_PARSE:
                    print(' ast: token_type is Symbol): append existing symbol', repr(ast))

            elif token_type == TOKEN_TRUE:
                ast.append(self.TRUE)
                if TRACE_PARSE: print(' ast: token_type is TOKEN_TRUE:', repr(ast))

            elif token_type == TOKEN_FALSE:
                ast.append(self.FALSE)
                if TRACE_PARSE: print(' ast: token_type is TOKEN_FALSE:', repr(ast))

            elif token_type == TOKEN_NOT:
                ast = [ast, self.NOT]
                if TRACE_PARSE: print(' ast: token_type is TOKEN_NOT:', repr(ast))

            elif token_type == TOKEN_AND:
                ast = self._start_operation(ast, self.AND, precedence)
                if TRACE_PARSE:
                    print('  ast:token_type is TOKEN_AND: start_operation', ast)

            elif token_type == TOKEN_OR:
                ast = self._start_operation(ast, self.OR, precedence)
                if TRACE_PARSE:
                    print('  ast:token_type is TOKEN_OR: start_operation', ast)

            elif token_type == TOKEN_LPAR:
                if prev_token:
                    # Check that an opening parens is preceded by a function
                    # or an opening parens
                    if prev_token_type not in (TOKEN_NOT, TOKEN_AND, TOKEN_OR, TOKEN_LPAR):
                        raise ParseError(token_type, token_string, token_position, PARSE_INVALID_NESTING)
                ast = [ast, TOKEN_LPAR]

            elif token_type == TOKEN_RPAR:
                while True:
                    if ast[0] is None:
                        raise ParseError(token_type, token_string, token_position, PARSE_UNBALANCED_CLOSING_PARENS)

                    if ast[1] is TOKEN_LPAR:
                        ast[0].append(ast[2])
                        if TRACE_PARSE: print('ast9:', repr(ast))
                        ast = ast[0]
                        if TRACE_PARSE: print('ast10:', repr(ast))
                        break

                    if isinstance(ast[1], int):
                        raise ParseError(token_type, token_string, token_position, PARSE_UNBALANCED_CLOSING_PARENS)

                    # the parens are properly nested
                    # the top ast node should be a function subclass
                    if not (inspect.isclass(ast[1]) and issubclass(ast[1], self.Function)):
                        raise ParseError(token_type, token_string, token_position, PARSE_INVALID_NESTING)

                    subex = ast[1](*ast[2:])
                    ast[0].append(subex)
                    if TRACE_PARSE: print('ast11:', repr(ast))
                    ast = ast[0]
                    if TRACE_PARSE: print('ast12:', repr(ast))
            else:
                raise ParseError(token_type, token_string, token_position, PARSE_UNKNOWN_TOKEN)

            prev_token = (token_type, token_string, token_position)

        try:
            while True:
                if ast[0] is None:
                    if TRACE_PARSE: print('ast[0] is None:', repr(ast))
                    if ast[1] is None:
                        if TRACE_PARSE: print('  ast[1] is None:', repr(ast))
                        if len(ast) != 3:
                            raise ParseError(error_code=PARSE_INVALID_EXPRESSION)
                        parsed = ast[2]
                        if TRACE_PARSE: print('    parsed = ast[2]:', repr(parsed))

                    else:
                        # call the function in ast[1] with the rest of the ast as args
                        parsed = ast[1](*ast[2:])
                        if TRACE_PARSE: print('  parsed = ast[1](*ast[2:]):', repr(parsed))
                    break
                else:
                    if TRACE_PARSE: print('subex = ast[1](*ast[2:]):', repr(ast))
                    subex = ast[1](*ast[2:])
                    ast[0].append(subex)
                    if TRACE_PARSE: print('  ast[0].append(subex):', repr(ast))
                    ast = ast[0]
                    if TRACE_PARSE: print('    ast = ast[0]:', repr(ast))
        except TypeError:
            raise ParseError(error_code=PARSE_INVALID_EXPRESSION)

        if simplify:
            return parsed.simplify()

        if TRACE_PARSE: print('final parsed:', repr(parsed))
        return parsed

    def _start_operation(self, ast, operation, precedence):
        """
        Return an AST where all operations of lower precedence are finalized.
        """
        if TRACE_PARSE:
            print('   start_operation:', repr(operation), 'AST:', ast)

        op_prec = precedence[operation]
        while True:
            if ast[1] is None:
                # [None, None, x]
                if TRACE_PARSE: print('     start_op: ast[1] is None:', repr(ast))
                ast[1] = operation
                if TRACE_PARSE: print('     --> start_op: ast[1] is None:', repr(ast))
                return ast

            prec = precedence[ast[1]]
            if prec > op_prec:  # op=&, [ast, |, x, y] -> [[ast, |, x], &, y]
                if TRACE_PARSE: print('     start_op: prec > op_prec:', repr(ast))
                ast = [ast, operation, ast.pop(-1)]
                if TRACE_PARSE: print('     --> start_op: prec > op_prec:', repr(ast))
                return ast

            if prec == op_prec:  # op=&, [ast, &, x] -> [ast, &, x]
                if TRACE_PARSE: print('     start_op: prec == op_prec:', repr(ast))
                return ast

            if not (inspect.isclass(ast[1]) and issubclass(ast[1], self.Function)):
                # the top ast node should be a function subclass at this stage
                raise ParseError(error_code=PARSE_INVALID_NESTING)

            if ast[0] is None:  # op=|, [None, &, x, y] -> [None, |, x&y]
                if TRACE_PARSE: print('     start_op: ast[0] is None:', repr(ast))
                subexp = ast[1](*ast[2:])
                new_ast = [ast[0], operation, subexp]
                if TRACE_PARSE: print('     --> start_op: ast[0] is None:', repr(new_ast))
                return new_ast

            else:  # op=|, [[ast, &, x], ~, y] -> [ast, &, x, ~y]
                if TRACE_PARSE: print('     start_op: else:', repr(ast))
                ast[0].append(ast[1](*ast[2:]))
                ast = ast[0]
                if TRACE_PARSE: print('     --> start_op: else:', repr(ast))

    def tokenize(self, expr):
        """
        Return an iterable of 3-tuple describing each token given an expression
        unicode string.

        This 3-tuple contains (token, token string, position):
        - token: either a Symbol instance or one of TOKEN_* token types.
        - token string: the original token unicode string.
        - position: some simple object describing the starting position of the
          original token string in the `expr` string. It can be an int for a
          character offset, or a tuple of starting (row/line, column).

        The token position is used only for error reporting and can be None or
        empty.

        Raise ParseError on errors. The ParseError.args is a tuple of:
        (token_string, position, error message)

        You can use this tokenizer as a base to create specialized tokenizers
        for your custom algebra by subclassing BooleanAlgebra. See also the
        tests for other examples of alternative tokenizers.

        This tokenizer has these characteristics:
        - The `expr` string can span multiple lines,
        - Whitespace is not significant.
        - The returned position is the starting character offset of a token.

        - A TOKEN_SYMBOL is returned for valid identifiers which is a string
        without spaces. These are valid identifiers:
            - Python identifiers.
            - a string even if starting with digits
            - digits (except for 0 and 1).
            - dotted names : foo.bar consist of one token.
            - names with colons: foo:bar consist of one token.
            These are not identifiers:
            - quoted strings.
            - any punctuation which is not an operation

        - Recognized operators are (in any upper/lower case combinations):
            - for and:  '*', '&', 'and'
            - for or: '+', '|', 'or'
            - for not: '~', '!', 'not'

        - Recognized special symbols are (in any upper/lower case combinations):
            - True symbols: 1 and True
            - False symbols: 0, False and None
        """
        if not isinstance(expr, basestring):
            raise TypeError('expr must be string but it is %s.' % type(expr))

        # mapping of lowercase token strings to a token type id for the standard
        # operators, parens and common true or false symbols, as used in the
        # default tokenizer implementation.
        TOKENS = {
            '*': TOKEN_AND, '&': TOKEN_AND, 'and': TOKEN_AND,
            '+': TOKEN_OR, '|': TOKEN_OR, 'or': TOKEN_OR,
            '~': TOKEN_NOT, '!': TOKEN_NOT, 'not': TOKEN_NOT,
            '(': TOKEN_LPAR, ')': TOKEN_RPAR,
            '[': TOKEN_LPAR, ']': TOKEN_RPAR,
            'true': TOKEN_TRUE, '1': TOKEN_TRUE,
            'false': TOKEN_FALSE, '0': TOKEN_FALSE, 'none': TOKEN_FALSE
        }

        position = 0
        length = len(expr)

        while position < length:
            tok = expr[position]

            sym = tok.isalnum() or tok == '_'
            if sym:
                position += 1
                while position < length:
                    char = expr[position]
                    if char.isalnum() or char in self.allowed_in_token:
                        position += 1
                        tok += char
                    else:
                        break
                position -= 1

            try:
                yield TOKENS[tok.lower()], tok, position
            except KeyError:
                if sym:
                    yield TOKEN_SYMBOL, tok, position
                elif tok not in (' ', '\t', '\r', '\n'):
                    raise ParseError(token_string=tok, position=position,
                                     error_code=PARSE_UNKNOWN_TOKEN)

            position += 1

    # TODO: explain what this means exactly
    def _rdistributive(self, expr, op_example):
        """
        Recursively flatten the `expr` expression for the `op_example`
        AND or OR operation instance exmaple.
        """
        if expr.isliteral:
            return expr

        expr_class = expr.__class__

        args = (self._rdistributive(arg, op_example) for arg in expr.args)
        args = tuple(arg.simplify() for arg in args)
        if len(args) == 1:
            return args[0]

        expr = expr_class(*args)

        dualoperation = op_example.dual
        if isinstance(expr, dualoperation):
            expr = expr.distributive()
        return expr

    def normalize(self, expr, operation):
        """
        Return a normalized expression transformed to its normal form in the
        given AND or OR operation.

        The new expression arguments will satisfy these conditions:
        - operation(*args) == expr (here mathematical equality is meant)
        - the operation does not occur in any of its arg.
        - NOT is only appearing in literals (aka. Negation normal form).

        The operation must be an AND or OR operation or a subclass.
        """
        # ensure that the operation is not NOT
        assert operation in (self.AND, self.OR,)
        # Move NOT inwards.
        expr = expr.literalize()
        # Simplify first otherwise _rdistributive() may take forever.
        expr = expr.simplify()
        operation_example = operation(self.TRUE, self.FALSE)
        expr = self._rdistributive(expr, operation_example)
        # Canonicalize
        expr = expr.simplify()
        return expr

    def cnf(self, expr):
        """
        Return a conjunctive normal form of the `expr` expression.
        """
        return self.normalize(expr, self.AND)

    def dnf(self, expr):
        """
        Return a disjunctive normal form of the `expr` expression.
        """
        return self.normalize(expr, self.OR)


class Expression(object):
    """
    Abstract base class for all boolean expressions, including functions and
    variable symbols.
    """
    # Defines sort and comparison order between expressions arguments
    sort_order = None

    # Store arguments aka. subterms of this expressions.
    # subterms are either literals or expressions.
    args = tuple()

    # True is this is a literal expression such as a Symbol, TRUE or FALSE
    isliteral = False

    # True if this expression has been simplified to in canonical form.
    iscanonical = False

    # these class attributes are configured when a new BooleanAlgebra is created
    TRUE = None
    FALSE = None
    NOT = None
    AND = None
    OR = None
    Symbol = None

    @property
    def objects(self):
        """
        Return a set of all associated objects with this expression symbols.
        Include recursively subexpressions objects.
        """
        return set(s.obj for s in self.symbols)

    def get_literals(self):
        """
        Return a list of all the literals contained in this expression.
        Include recursively subexpressions symbols.
        This includes duplicates.
        """
        if self.isliteral:
            return [self]
        if not self.args:
            return []
        return list(itertools.chain.from_iterable(arg.get_literals() for arg in self.args))

    @property
    def literals(self):
        """
        Return a set of all literals contained in this expression.
        Include recursively subexpressions literals.
        """
        return set(self.get_literals())

    def literalize(self):
        """
        Return an expression where NOTs are only occurring as literals.
        Applied recursively to subexpressions.
        """
        if self.isliteral:
            return self
        args = tuple(arg.literalize() for arg in self.args)
        if all(arg is self.args[i] for i, arg in enumerate(args)):
            return self

        return self.__class__(*args)

    def get_symbols(self):
        """
        Return a list of all the symbols contained in this expression.
        Include recursively subexpressions symbols.
        This includes duplicates.
        """
        return [s if isinstance(s, Symbol) else s.args[0] for s in self.get_literals()]

    @property
    def symbols(self,):
        """
        Return a list of all the symbols contained in this expression.
        Include recursively subexpressions symbols.
        This includes duplicates.
        """
        return set(self.get_symbols())

    def subs(self, substitutions, default=None, simplify=False):
        """
        Return an expression where the expression or all subterms equal to a key
        expression are substituted with the corresponding value expression using
        a mapping of: {expr->expr to substitute.}

        Return this expression unmodified if nothing could be substituted.

        Note that this can be used to tested for expression containment.
        """
        # shortcut: check if we have our whole expression as a possible
        # subsitution source
        for expr, substitution in substitutions.items():
            if expr == self:
                return substitution

        # otherwise, do a proper substitution of sub expressions
        expr = self._subs(substitutions, default, simplify)
        return self if expr is None else expr

    def _subs(self, substitutions, default, simplify):
        """
        Return an expression where all subterms equal to a key expression are
        substituted by the corresponding value expression using a mapping of:
        {expr->expr to substitute.}
        """
        # track the new list of unchanged args or replaced args through
        # a substitution
        new_arguments = []
        changed_something = False

        # shortcut for basic logic True or False
        if self is self.TRUE or self is self.FALSE:
            return self

        # if the expression has no elements, e.g. is empty, do not apply
        # substitions
        if not self.args:
            return default

        # iterate the subexpressions: either plain symbols or a subexpressions
        for arg in self.args:
            # collect substitutions for exact matches
            # break as soon as we have a match
            for expr, substitution in substitutions.items():
                if arg == expr:
                    new_arguments.append(substitution)
                    changed_something = True
                    break

            # this will execute only if we did not break out of the
            # loop, e.g. if we did not change anything and did not
            # collect any substitutions
            else:
                # recursively call _subs on each arg to see if we get a
                # substituted arg
                new_arg = arg._subs(substitutions, default, simplify)
                if new_arg is None:
                    # if we did not collect a substitution for this arg,
                    # keep the arg as-is, it is not replaced by anything
                    new_arguments.append(arg)
                else:
                    # otherwise, we add the substitution for this arg instead
                    new_arguments.append(new_arg)
                    changed_something = True

        if not changed_something:
            return

        # here we did some substitution: we return a new expression
        # built from the new_arguments
        newexpr = self.__class__(*new_arguments)
        return newexpr.simplify() if simplify else newexpr

    def simplify(self):
        """
        Return a new simplified expression in canonical form built from this
        expression. The simplified expression may be exactly the same as this
        expression.

        Subclasses override this method to compute actual simplification.
        """
        return self

    def __hash__(self):
        """
        Expressions are immutable and hashable. The hash of Functions is
        computed by respecting the structure of the whole expression by mixing
        the class name hash and the recursive hash of a frozenset of arguments.
        Hash of elements is based on their boolean equivalent. Hash of symbols
        is based on their object.
        """
        if not self.args:
            arghash = id(self)
        else:
            arghash = hash(frozenset(map(hash, self.args)))
        return hash(self.__class__.__name__) ^ arghash

    def __eq__(self, other):
        """
        Test if other element is structurally the same as itself.

        This method does not make any simplification or transformation, so it
        will return False although the expression terms may be mathematically
        equal. Use simplify() before testing equality.

        For literals, plain equality is used.
        For functions, it uses the facts that operations are:
        - commutative and considers different ordering as equal.
        - idempotent, so args can appear more often in one term than in the other.
        """
        if self is other:
            return True

        if isinstance(other, self.__class__):
            return frozenset(self.args) == frozenset(other.args)

        return NotImplemented

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if self.sort_order is not None and other.sort_order is not None:
            if self.sort_order == other.sort_order:
                return NotImplemented
            return self.sort_order < other.sort_order
        return NotImplemented

    def __gt__(self, other):
        lt = other.__lt__(self)
        if lt is NotImplemented:
            return not self.__lt__(other)
        return lt

    def __and__(self, other):
        return self.AND(self, other)

    __mul__ = __and__

    def __invert__(self):
        return self.NOT(self)

    def __or__(self, other):
        return self.OR(self, other)

    __add__ = __or__

    def __bool__(self):
        raise TypeError('Cannot evaluate expression as a Python Boolean.')

    __nonzero__ = __bool__


class BaseElement(Expression):
    """
    Abstract base class for the base elements TRUE and FALSE of the boolean
    algebra.
    """
    sort_order = 0

    def __init__(self):
        super(BaseElement, self).__init__()
        self.iscanonical = True

        # The dual Base Element class for this element: TRUE.dual returns
        # _FALSE() and FALSE.dual returns _TRUE(). This is a cyclic reference
        # and therefore only assigned after creation of the singletons,
        self.dual = None

    def __lt__(self, other):
        if isinstance(other, BaseElement):
            return self == self.FALSE
        return NotImplemented

    __nonzero__ = __bool__ = lambda s: None

    def pretty(self, indent=0, debug=False):
        """
        Return a pretty formatted representation of self.
        """
        return (' ' * indent) + repr(self)


class _TRUE(BaseElement):
    """
    Boolean base element TRUE.
    Not meant to be subclassed nor instantiated directly.
    """

    def __init__(self):
        super(_TRUE, self).__init__()
        # assigned at singleton creation: self.dual = FALSE

    def __hash__(self):
        return hash(True)

    def __eq__(self, other):
        return self is other or other is True or isinstance(other, _TRUE)

    def __str__(self):
        return '1'

    def __repr__(self):
        return 'TRUE'

    def __call__(self):
        return self

    __nonzero__ = __bool__ = lambda s: True


class _FALSE(BaseElement):
    """
    Boolean base element FALSE.
    Not meant to be subclassed nor instantiated directly.
    """

    def __init__(self):
        super(_FALSE, self).__init__()
        # assigned at singleton creation: self.dual = TRUE

    def __hash__(self):
        return hash(False)

    def __eq__(self, other):
        return self is other or other is False or isinstance(other, _FALSE)

    def __str__(self):
        return '0'

    def __repr__(self):
        return 'FALSE'

    def __call__(self):
        return self

    __nonzero__ = __bool__ = lambda s: False


class Symbol(Expression):
    """
    Boolean variable.

    A Symbol can hold an object used to determine equality between symbols.
    """

    sort_order = 5

    def __init__(self, obj):
        super(Symbol, self).__init__()
        # Store an associated object. This object determines equality
        self.obj = obj
        self.iscanonical = True
        self.isliteral = True

    def __call__(self, **kwargs):
        """
        Return the evaluated value for this symbol from kwargs
        """
        return kwargs[self.obj]

    def __hash__(self):
        if self.obj is None:  # Anonymous Symbol.
            return id(self)
        return hash(self.obj)

    def __eq__(self, other):
        if self is other:
            return True
        if isinstance(other, self.__class__):
            return self.obj == other.obj
        return NotImplemented

    def __lt__(self, other):
        comparator = Expression.__lt__(self, other)
        if comparator is not NotImplemented:
            return comparator
        if isinstance(other, Symbol):
            return self.obj < other.obj
        return NotImplemented

    def __str__(self):
        return str(self.obj)

    def __repr__(self):
        obj = "'%s'" % self.obj if isinstance(self.obj, basestring) else repr(self.obj)
        return '%s(%s)' % (self.__class__.__name__, obj)

    def pretty(self, indent=0, debug=False):
        """
        Return a pretty formatted representation of self.
        """
        debug_details = ''
        if debug:
            debug_details += '<isliteral=%r, iscanonical=%r>' % (self.isliteral, self.iscanonical)

        obj = "'%s'" % self.obj if isinstance(self.obj, basestring) else repr(self.obj)
        return (' ' * indent) + ('%s(%s%s)' % (self.__class__.__name__, debug_details, obj))


class Function(Expression):
    """
    Boolean function.

    A boolean function takes n (one or more) boolean expressions as arguments
    where n is called the order of the function and maps them to one of the base
    elements TRUE or FALSE. Implemented functions are AND, OR and NOT.
    """

    def __init__(self, *args):
        super(Function, self).__init__()

        # Specifies an infix notation of an operator for printing such as | or &.
        self.operator = None

        assert all(isinstance(arg, Expression) for arg in args), \
            'Bad arguments: all arguments must be an Expression: %r' % (args,)
        self.args = tuple(args)

    def __str__(self):
        args = self.args
        if len(args) == 1:
            if self.isliteral:
                return '%s%s' % (self.operator, args[0])
            return '%s(%s)' % (self.operator, args[0])

        args_str = []
        for arg in args:
            if arg.isliteral:
                args_str.append(str(arg))
            else:
                args_str.append('(%s)' % arg)

        return self.operator.join(args_str)

    def __repr__(self):
        return '%s(%s)' % (self.__class__.__name__, ', '.join(map(repr, self.args)))

    def pretty(self, indent=0, debug=False):
        """
        Return a pretty formatted representation of self as an indented tree.

        If debug is True, also prints debug information for each expression arg.

        For example::

            >>> print(BooleanAlgebra().parse(
            ...    u'not a and not b and not (a and ba and c) and c or c').pretty())
            OR(
              AND(
                NOT(Symbol('a')),
                NOT(Symbol('b')),
                NOT(
                  AND(
                    Symbol('a'),
                    Symbol('ba'),
                    Symbol('c')
                  )
                ),
                Symbol('c')
              ),
              Symbol('c')
            )
        """
        debug_details = ''
        if debug:
            debug_details += '<isliteral=%r, iscanonical=%r' % (self.isliteral, self.iscanonical)
            identity = getattr(self, 'identity', None)
            if identity is not None:
                debug_details += ', identity=%r' % (identity)

            annihilator = getattr(self, 'annihilator', None)
            if annihilator is not None:
                debug_details += ', annihilator=%r' % (annihilator)

            dual = getattr(self, 'dual', None)
            if dual is not None:
                debug_details += ', dual=%r' % (dual)
            debug_details += '>'
        cls = self.__class__.__name__
        args = [a.pretty(indent=indent + 2, debug=debug) for a in self.args]
        pfargs = ',\n'.join(args)
        cur_indent = ' ' * indent
        new_line = '' if self.isliteral else '\n'
        return '{cur_indent}{cls}({debug_details}{new_line}{pfargs}\n{cur_indent})'.format(**locals())


class NOT(Function):
    """
    Boolean NOT operation.

    The NOT operation takes exactly one argument. If this argument is a Symbol
    the resulting expression is also called a literal.

    The operator "~" can be used as abbreviation for NOT, e.g. instead of NOT(x)
    one can write ~x (where x is some boolean expression). Also for printing "~"
    is used for better readability.

    You can subclass to define alternative string representation.

    For example::

    >>> class NOT2(NOT):
    ...     def __init__(self, *args):
    ...         super(NOT2, self).__init__(*args)
    ...         self.operator = '!'
    """

    def __init__(self, arg1):
        super(NOT, self).__init__(arg1)
        self.isliteral = isinstance(self.args[0], Symbol)
        self.operator = '~'

    def literalize(self):
        """
        Return an expression where NOTs are only occurring as literals.
        """
        expr = self.demorgan()
        if isinstance(expr, self.__class__):
            return expr
        return expr.literalize()

    def simplify(self):
        """
        Return a simplified expr in canonical form.

        This means double negations are canceled out and all contained boolean
        objects are in their canonical form.
        """
        if self.iscanonical:
            return self

        expr = self.cancel()
        if not isinstance(expr, self.__class__):
            return expr.simplify()

        if expr.args[0] in (self.TRUE, self.FALSE,):
            return expr.args[0].dual

        expr = self.__class__(expr.args[0].simplify())
        expr.iscanonical = True
        return expr

    def cancel(self):
        """
        Cancel itself and following NOTs as far as possible.
        Returns the simplified expression.
        """
        expr = self
        while True:
            arg = expr.args[0]
            if not isinstance(arg, self.__class__):
                return expr
            expr = arg.args[0]
            if not isinstance(expr, self.__class__):
                return expr

    def demorgan(self):
        """
        Return a expr where the NOT function is moved inward.
        This is achieved by canceling double NOTs and using De Morgan laws.
        """
        expr = self.cancel()
        if expr.isliteral or not isinstance(expr, self.NOT):
            return expr
        op = expr.args[0]
        return op.dual(*(self.__class__(arg).cancel() for arg in op.args))

    def __call__(self, **kwargs):
        """
        Return the evaluated (negated) value for this function.
        """
        return not self.args[0](**kwargs)

    def __lt__(self, other):
        return self.args[0] < other

    def pretty(self, indent=1, debug=False):
        """
        Return a pretty formatted representation of self.
        Include additional debug details if `debug` is True.
        """
        debug_details = ''
        if debug:
            debug_details += '<isliteral=%r, iscanonical=%r>' % (self.isliteral, self.iscanonical)
        if self.isliteral:
            pretty_literal = self.args[0].pretty(indent=0, debug=debug)
            return (' ' * indent) + '%s(%s%s)' % (self.__class__.__name__, debug_details, pretty_literal)
        else:
            return super(NOT, self).pretty(indent=indent, debug=debug)


class DualBase(Function):
    """
    Base class for AND and OR function.

    This class uses the duality principle to combine similar methods of AND
    and OR. Both operations take 2 or more arguments and can be created using
    "|" for OR and "&" for AND.
    """

    _pyoperator = None

    def __init__(self, arg1, arg2, *args):
        super(DualBase, self).__init__(arg1, arg2, *args)

        # identity element for the specific operation.
        # This will be TRUE for the AND operation and FALSE for the OR operation.
        self.identity = None

        # annihilator element for this function.
        # This will be FALSE for the AND operation and TRUE for the OR operation.
        self.annihilator = None

        # dual class of this function.
        # This means OR.dual returns AND and AND.dual returns OR.
        self.dual = None

    def __contains__(self, expr):
        """
        Test if expr is a subterm of this expression.
        """
        if expr in self.args:
            return True

        if isinstance(expr, self.__class__):
            return all(arg in self.args for arg in expr.args)

    def simplify(self, sort=True):
        """
        Return a new simplified expression in canonical form from this
        expression.

        For simplification of AND and OR fthe ollowing rules are used
        recursively bottom up:
         - Associativity (output does not contain same operations nested)
         - Annihilation
         - Idempotence
         - Identity
         - Complementation
         - Elimination
         - Absorption
         - Commutativity (output is always sorted)

        Other boolean objects are also in their canonical form.
        """
        # TODO: Refactor DualBase.simplify into different "sub-evals".

        # If self is already canonical do nothing.
        if self.iscanonical:
            return self

        # Otherwise bring arguments into canonical form.
        args = [arg.simplify() for arg in self.args]

        # Create new instance of own class with canonical args.
        # TODO: Only create new class if some args changed.
        expr = self.__class__(*args)

        # Literalize before doing anything, this also applies De Morgan's Law
        expr = expr.literalize()

        # Associativity:
        #     (A & B) & C = A & (B & C) = A & B & C
        #     (A | B) | C = A | (B | C) = A | B | C
        expr = expr.flatten()

        # Annihilation: A & 0 = 0, A | 1 = 1
        if self.annihilator in expr.args:
            return self.annihilator

        # Idempotence: A & A = A, A | A = A
        # this boils down to removing duplicates
        args = []
        for arg in expr.args:
            if arg not in args:
                args.append(arg)
        if len(args) == 1:
            return args[0]

        # Identity: A & 1 = A, A | 0 = A
        if self.identity in args:
            args.remove(self.identity)
            if len(args) == 1:
                return args[0]

        # Complementation: A & ~A = 0, A | ~A = 1
        for arg in args:
            if self.NOT(arg) in args:
                return self.annihilator

        # Elimination: (A & B) | (A & ~B) = A, (A | B) & (A | ~B) = A
        i = 0
        while i < len(args) - 1:
            j = i + 1
            ai = args[i]
            if not isinstance(ai, self.dual):
                i += 1
                continue
            while j < len(args):
                aj = args[j]
                if not isinstance(aj, self.dual) or len(ai.args) != len(aj.args):
                    j += 1
                    continue

                # Find terms where only one arg is different.
                negated = None
                for arg in ai.args:
                    # FIXME: what does this pass Do?
                    if arg in aj.args:
                        pass
                    elif self.NOT(arg).cancel() in aj.args:
                        if negated is None:
                            negated = arg
                        else:
                            negated = None
                            break
                    else:
                        negated = None
                        break

                # If the different arg is a negation simplify the expr.
                if negated is not None:
                    # Cancel out one of the two terms.
                    del args[j]
                    aiargs = list(ai.args)
                    aiargs.remove(negated)
                    if len(aiargs) == 1:
                        args[i] = aiargs[0]
                    else:
                        args[i] = self.dual(*aiargs)

                    if len(args) == 1:
                        return args[0]
                    else:
                        # Now the other simplifications have to be redone.
                        return self.__class__(*args).simplify()
                j += 1
            i += 1

        # Absorption: A & (A | B) = A, A | (A & B) = A
        # Negative absorption: A & (~A | B) = A & B, A | (~A & B) = A | B
        args = self.absorb(args)
        if len(args) == 1:
            return args[0]

        # Commutativity: A & B = B & A, A | B = B | A
        if sort:
            args.sort()

        # Create new (now canonical) expression.
        expr = self.__class__(*args)
        expr.iscanonical = True
        return expr

    def flatten(self):
        """
        Return a new expression where nested terms of this expression are
        flattened as far as possible.

        E.g. A & (B & C) becomes A & B & C.
        """
        args = list(self.args)
        i = 0
        for arg in self.args:
            if isinstance(arg, self.__class__):
                args[i:i + 1] = arg.args
                i += len(arg.args)
            else:
                i += 1

        return self.__class__(*args)

    def absorb(self, args):
        """
        Given an `args` sequence of expressions, return a new list of expression
        applying absorption and negative absorption.

        See https://en.wikipedia.org/wiki/Absorption_law

        Absorption: A & (A | B) = A, A | (A & B) = A
        Negative absorption: A & (~A | B) = A & B, A | (~A & B) = A | B
        """
        args = list(args)
        if not args:
            args = list(self.args)
        i = 0
        while i < len(args):
            absorber = args[i]
            j = 0
            while j < len(args):
                if j == i:
                    j += 1
                    continue
                target = args[j]
                if not isinstance(target, self.dual):
                    j += 1
                    continue

                # Absorption
                if absorber in target:
                    del args[j]
                    if j < i:
                        i -= 1
                    continue

                # Negative absorption
                neg_absorber = self.NOT(absorber).cancel()
                if neg_absorber in target:
                    b = target.subtract(neg_absorber, simplify=False)
                    if b is None:
                        del args[j]
                        if j < i:
                            i -= 1
                        continue
                    else:
                        args[j] = b
                        j += 1
                        continue

                if isinstance(absorber, self.dual):
                    remove = None
                    for arg in absorber.args:
                        narg = self.NOT(arg).cancel()
                        if arg in target.args:
                            pass
                        elif narg in target.args:
                            if remove is None:
                                remove = narg
                            else:
                                remove = None
                                break
                        else:
                            remove = None
                            break
                    if remove is not None:
                        args[j] = target.subtract(remove, simplify=True)
                j += 1
            i += 1

        return args

    def subtract(self, expr, simplify):
        """
        Return a new expression where the `expr` expression has been removed
        from this expression if it exists.
        """
        args = self.args
        if expr in self.args:
            args = list(self.args)
            args.remove(expr)
        elif isinstance(expr, self.__class__):
            if all(arg in self.args for arg in expr.args):
                args = tuple(arg for arg in self.args if arg not in expr)
        if len(args) == 0:
            return None
        if len(args) == 1:
            return args[0]

        newexpr = self.__class__(*args)
        if simplify:
            newexpr = newexpr.simplify()
        return newexpr

    def distributive(self):
        """
        Return a term where the leading AND or OR terms are switched.

        This is done by applying the distributive laws:
            A & (B|C) = (A&B) | (A&C)
            A | (B&C) = (A|B) & (A|C)
        """
        dual = self.dual
        args = list(self.args)
        for i, arg in enumerate(args):
            if isinstance(arg, dual):
                args[i] = arg.args
            else:
                args[i] = (arg,)

        prod = itertools.product(*args)
        args = tuple(self.__class__(*arg).simplify() for arg in prod)

        if len(args) == 1:
            return args[0]
        else:
            return dual(*args)

    def __lt__(self, other):
        comparator = Expression.__lt__(self, other)
        if comparator is not NotImplemented:
            return comparator

        if isinstance(other, self.__class__):
            lenself = len(self.args)
            lenother = len(other.args)
            for i in range(min(lenself, lenother)):
                if self.args[i] == other.args[i]:
                    continue

                comparator = self.args[i] < other.args[i]
                if comparator is not NotImplemented:
                    return comparator

            if lenself != lenother:
                return lenself < lenother
        return NotImplemented

    def __call__(self, **kwargs):
        """
        Return the evaluation of this expression by calling each of its arg as
        arg(**kwargs) and applying its corresponding Python operator (and or or)
        to the results.

        Reduce is used as in e.g. AND(a, b, c, d) == AND(a, AND(b, AND(c, d)))
        ore.g. OR(a, b, c, d) == OR(a, OR(b, OR(c, d)))
        """
        return reduce(self._pyoperator, (a(**kwargs) for a in self.args))


class AND(DualBase):
    """
    Boolean AND operation, taking 2 or more arguments.

    It can also be created by using "&" between two boolean expressions.

    You can subclass to define alternative string representation.
    For example::
    >>> class AND2(AND):
    ...     def __init__(self, *args):
    ...         super(AND2, self).__init__(*args)
    ...         self.operator = 'AND'
    """

    sort_order = 10
    _pyoperator = and_operator

    def __init__(self, arg1, arg2, *args):
        super(AND, self).__init__(arg1, arg2, *args)
        self.identity = self.TRUE
        self.annihilator = self.FALSE
        self.dual = self.OR
        self.operator = '&'


class OR(DualBase):
    """
    Boolean OR operation, taking 2 or more arguments

    It can also be created by using "|" between two boolean expressions.

    You can subclass to define alternative string representation.
    For example::

    >>> class OR2(OR):
    ...     def __init__(self, *args):
    ...         super(OR2, self).__init__(*args)
    ...         self.operator = 'OR'
    """

    sort_order = 25
    _pyoperator = or_operator

    def __init__(self, arg1, arg2, *args):
        super(OR, self).__init__(arg1, arg2, *args)
        self.identity = self.FALSE
        self.annihilator = self.TRUE
        self.dual = self.AND
        self.operator = '|'