1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
"""
This module contains common code shared by utils/rule_dir_stats.py and utils/rule_dir_diff.py.
This code includes functions for walking the output of the utils/rule_dir_json.py script, and
filtering functions used in both scripts.
"""
from __future__ import absolute_import
from __future__ import print_function
import os
from collections import defaultdict
from .build_remediations import REMEDIATION_TO_EXT_MAP as REMEDIATION_MAP
from .utils import subset_dict
def get_affected_products(rule_obj):
"""
Extracts and returns the set of affected products from a given rule object.
Args:
rule_obj (dict): A dictionary representing a rule, which contains a 'products' key.
Returns:
set: A set of products affected by the rule.
"""
return set(rule_obj['products'])
def get_all_affected_products(args, rule_obj):
"""
From a rule_obj, return the set of affected products from rule.yml, and all fixes and checks.
If args.strict is set, this function is equivalent to get_affected_products. Otherwise, it
includes ovals and fix content based on the values of args.fixes_only and args.ovals_only.
Args:
args (Namespace): The arguments passed to the script, containing flags such as strict,
fixes_only, and ovals_only.
rule_obj (dict): The rule object containing information about the rule, including affected
products, oval products, and remediation products.
Returns:
set: A set of affected products based on the rule object and the provided arguments.
"""
affected_products = get_affected_products(rule_obj)
if args.strict:
return affected_products
if not args.fixes_only:
for product in rule_obj['oval_products']:
affected_products.add(product)
if not args.ovals_only:
for product in rule_obj['remediation_products']:
affected_products.add(product)
return affected_products
def _walk_rule(args, rule_obj, oval_func, remediation_func, verbose_output):
"""
Walks a single rule and updates verbose_output if visited.
Internal function for walk_rules and walk_rules_parallel.
Args:
args: An object containing arguments and configurations.
rule_obj: A dictionary representing the rule to be processed.
oval_func: A function to process the rule's OVAL definitions.
remediation_func: A function to process the rule's remediation scripts.
verbose_output: A dictionary to store detailed output for each rule.
Returns:
bool: True if the rule was visited and processed, False otherwise.
"""
rule_id = rule_obj['id']
affected_products = get_all_affected_products(args, rule_obj)
if not affected_products.intersection(args.products):
return False
if args.query and rule_id not in args.query:
return False
if not args.fixes_only:
result = oval_func(rule_obj)
if result:
verbose_output[rule_id]['oval'] = result
if not args.ovals_only:
for r_type in REMEDIATION_MAP:
result = remediation_func(rule_obj, r_type)
if result:
verbose_output[rule_id][r_type] = result
return True
def walk_rules(args, known_rules, oval_func, remediation_func):
"""
Walks through a dictionary of known rules, conditionally calling provided functions to
generate OVAL and remediation content, and returns the number of visited rules along with the
output for each visited rule.
Args:
args (object): An object containing arguments that control the behavior of the function.
known_rules (dict): A dictionary where keys are rule IDs and values are rule objects.
oval_func (function): A function to be called for each rule to generate OVAL content.
remediation_func (function): A function to be called for each rule to generate remediation content.
Returns:
tuple:
affected_rules (int): The number of rules that were visited.
verbose_output (dict): A dictionary containing the output for each visited rule.
The output structure is a dict as follows::
{
rule_id: {
"oval": oval_func(args, rule_obj),
"ansible": remediation_func(args, "ansible", rule_obj),
"anaconda": remediation_func(args, "anaconda", rule_obj),
"bash": remediation_func(args, "bash", rule_obj),
"puppet": remediation_func(args, "puppet", rule_obj)
},
...
}
The arguments supplied to oval_func are args and rule_obj.
The arguments supplied to remediation_func are args, the remediation type, and rule_obj.
The input rule_obj structure is the value of known_rules[rule_id].
"""
affected_rules = 0
verbose_output = defaultdict(lambda: defaultdict(lambda: None))
for rule_id in known_rules:
rule_obj = known_rules[rule_id]
if _walk_rule(args, rule_obj, oval_func, remediation_func, verbose_output):
affected_rules += 1
return affected_rules, verbose_output
def walk_rule_stats(rule_output):
"""
Walk the output of a rule, generating statistics about affected ovals, remediations, and
generating verbose output in a stable order.
Args:
rule_output (dict): The output of a rule containing information about ovals and remediations.
Returns:
tuple: A tuple containing the following elements:
- affected_ovals (int): The number of affected ovals.
- affected_remediations (int): The number of affected remediations.
- all_affected_remediations (int): The number of rules where all remediations are affected.
- affected_remediations_type (defaultdict): A dictionary with the count of each type of affected remediation.
- all_output (list): A list of all affected ovals and remediations in a stable order.
"""
affected_ovals = 0
affected_remediations = 0
all_affected_remediations = 0
affected_remediations_type = defaultdict(lambda: 0)
all_output = []
affected_remediation = False
all_remedation = True
if 'oval' in rule_output:
affected_ovals += 1
all_output.append(rule_output['oval'])
for r_type in sorted(REMEDIATION_MAP):
if r_type in rule_output:
affected_remediation = True
affected_remediations_type[r_type] += 1
all_output.append(rule_output[r_type])
else:
all_remedation = False
if affected_remediation:
affected_remediations += 1
if all_remedation:
all_affected_remediations += 1
return (affected_ovals, affected_remediations, all_affected_remediations,
affected_remediations_type, all_output)
def walk_rules_stats(args, known_rules, oval_func, remediation_func):
"""
Walk a dictionary of known_rules and generate simple aggregate statistics for all visited rules.
The oval_func and remediation_func arguments behave according to walk_rules().
An effort is made to provide consistently ordered verbose_output by sorting all visited keys
and the keys of ssg.build_remediations.REMEDIATION_MAP.
Args:
args: Arguments passed to the function.
known_rules (dict): A dictionary of known rules to be processed.
oval_func (function): Function to process OVAL definitions.
remediation_func (function): Function to process remediations.
Returns:
tuple: A tuple containing:
- affected_rules (int): Number of affected rules.
- affected_ovals (int): Number of affected OVAL definitions.
- affected_remediations (int): Number of affected remediations.
- all_affected_remediations (int): Total number of affected remediations.
- affected_remediations_type (dict): Dictionary with the count of each type of affected remediation.
- all_output (list): Ordered output of all functions.
"""
affected_rules, verbose_output = walk_rules(args, known_rules, oval_func, remediation_func)
affected_ovals = 0
affected_remediations = 0
all_affected_remediations = 0
affected_remediations_type = defaultdict(lambda: 0)
all_output = []
for rule_id in sorted(verbose_output):
rule_output = verbose_output[rule_id]
results = walk_rule_stats(rule_output)
affected_ovals += results[0]
affected_remediations += results[1]
all_affected_remediations += results[2]
for key in results[3]:
affected_remediations_type[key] += results[3][key]
all_output.extend(results[4])
return (affected_rules, affected_ovals, affected_remediations,
all_affected_remediations, affected_remediations_type, all_output)
def walk_rules_parallel(args, left_rules, right_rules, oval_func, remediation_func):
"""
Walks two sets of known_rules (left_rules and right_rules) with identical keys and returns
left_only, right_only, and common_only output from _walk_rule.
If the outputted data for a rule when called on left_rules and right_rules is the same, it is
added to common_only. Only rules which output different data will have their data added to
left_only and right_only respectively.
Args:
args: Arguments to be passed to the _walk_rule function.
left_rules (dict): Dictionary of rules on the left side.
right_rules (dict): Dictionary of rules on the right side.
oval_func (function): Function to process OVAL definitions.
remediation_func (function): Function to process remediation scripts.
Returns:
tuple: A tuple containing three elements:
- left_only (tuple): A tuple containing the count of affected rules and the verbose
output for rules only in left_rules.
- right_only (tuple): A tuple containing the count of affected rules and the verbose
output for rules only in right_rules.
- common_only (tuple): A tuple containing the count of affected rules and the verbose
output for rules common to both left_rules and right_rules.
Raises:
AssertionError: If the sets of keys in left_rules and right_rules are not identical.
"""
left_affected_rules = 0
right_affected_rules = 0
common_affected_rules = 0
left_verbose_output = defaultdict(lambda: defaultdict(lambda: None))
right_verbose_output = defaultdict(lambda: defaultdict(lambda: None))
common_verbose_output = defaultdict(lambda: defaultdict(lambda: None))
assert set(left_rules) == set(right_rules)
for rule_id in left_rules:
left_rule_obj = left_rules[rule_id]
right_rule_obj = right_rules[rule_id]
if left_rule_obj == right_rule_obj:
if _walk_rule(args, left_rule_obj, oval_func, remediation_func, common_verbose_output):
common_affected_rules += 1
else:
left_temp = defaultdict(lambda: defaultdict(lambda: None))
right_temp = defaultdict(lambda: defaultdict(lambda: None))
left_ret = _walk_rule(args, left_rule_obj, oval_func, remediation_func, left_temp)
right_ret = _walk_rule(args, right_rule_obj, oval_func, remediation_func, right_temp)
if left_ret == right_ret and left_temp == right_temp:
common_verbose_output.update(left_temp)
if left_ret:
common_affected_rules += 1
else:
left_verbose_output.update(left_temp)
right_verbose_output.update(right_temp)
if left_ret:
left_affected_rules += 1
if right_ret:
right_affected_rules += 1
left_only = (left_affected_rules, left_verbose_output)
right_only = (right_affected_rules, right_verbose_output)
common_only = (common_affected_rules, common_verbose_output)
return left_only, right_only, common_only
def walk_rules_diff(args, left_rules, right_rules, oval_func, remediation_func):
"""
Walk through two dictionaries of known rules and generate five sets of output.
Does not understand renaming of rule_ids as this would depend on disk content to reflect these
differences. Unless significantly more data is added to the rule_obj structure (contents of
rule.yml, ovals, remediations, etc.), all information besides 'title' is not uniquely
identifying or could be easily updated.
Args:
args: Arguments to be passed to the walk_rules and walk_rules_parallel functions.
left_rules (dict): Dictionary of rules on the left side.
right_rules (dict): Dictionary of rules on the right side.
oval_func (function): Function to process OVAL definitions.
remediation_func (function): Function to process remediation scripts.
Returns:
tuple: A five-tuple containing:
- left_only_data: Data for rules only in left_rules.
- right_only_data: Data for rules only in right_rules.
- left_changed_data: Data for rules in both left_rules and right_rules but changed in left_rules.
- right_changed_data: Data for rules in both left_rules and right_rules but changed in right_rules.
- common_data: Data for rules common to both left_rules and right_rules.
"""
left_rule_ids = set(left_rules)
right_rule_ids = set(right_rules)
left_only_rule_ids = left_rule_ids.difference(right_rule_ids)
right_only_rule_ids = right_rule_ids.difference(left_rule_ids)
common_rule_ids = left_rule_ids.intersection(right_rule_ids)
left_restricted = subset_dict(left_rules, left_only_rule_ids)
left_common = subset_dict(left_rules, common_rule_ids)
right_restricted = subset_dict(right_rules, right_only_rule_ids)
right_common = subset_dict(right_rules, common_rule_ids)
left_only_data = walk_rules(args, left_restricted, oval_func, remediation_func)
right_only_data = walk_rules(args, right_restricted, oval_func, remediation_func)
l_c_d, r_c_d, c_d = walk_rules_parallel(args, left_common, right_common,
oval_func, remediation_func)
left_changed_data = l_c_d
right_changed_data = r_c_d
common_data = c_d
return (left_only_data, right_only_data, left_changed_data, right_changed_data, common_data)
def walk_rules_diff_stats(results):
"""
Takes the results of walk_rules_diff (results) and generates five sets of output statistics.
Args:
results (list): A list of five elements, where each element is a tuple containing affected
rules and verbose output.
Returns:
tuple: A tuple containing five elements, each representing the statistics for left_only
rules, right_only rules, shared left rules, shared right rules, and shared common
rules. Each element in the tuple is itself a tuple containing:
- affected_rules (int): Number of affected rules.
- affected_ovals (int): Number of affected OVAL definitions.
- affected_remediations (int): Number of affected remediations.
- all_affected_remediations (int): Total number of affected remediations.
- affected_remediations_type (dict): Dictionary with remediation types as keys and
counts as values.
- all_output (list): List of all output data.
Raises:
AssertionError: If the length of results is not 5 or the length of output_data is not 5.
"""
assert len(results) == 5
output_data = []
for data in results:
affected_rules, verbose_output = data
affected_ovals = 0
affected_remediations = 0
all_affected_remediations = 0
affected_remediations_type = defaultdict(lambda: 0)
all_output = []
for rule_id in sorted(verbose_output):
rule_output = verbose_output[rule_id]
_results = walk_rule_stats(rule_output)
affected_ovals += _results[0]
affected_remediations += _results[1]
all_affected_remediations += _results[2]
for key in _results[3]:
affected_remediations_type[key] += _results[3][key]
all_output.extend(_results[4])
output_data.append((affected_rules, affected_ovals,
affected_remediations, all_affected_remediations,
affected_remediations_type, all_output))
assert len(output_data) == 5
return tuple(output_data)
def filter_rule_ids(all_keys, queries):
"""
Filters a set of keys based on a set of queries.
A set of queries is a comma separated list of queries, where a query is either a rule id or
a substring thereof.
Args:
all_keys (iterable): An iterable containing all possible keys.
queries (str): A comma-separated list of queries, where each query is either a rule id or
a substring thereof. If the literal string "all" is provided, all keys are
returned.
Returns:
set: A set of keys from all_keys that match any of the queries. If queries is empty, an
empty set is returned. If queries is "all", all keys are returned.
"""
if not queries:
return set()
if queries == 'all':
return set(all_keys)
# We assume that all_keys is much longer than queries; this allows us to do
# len(all_keys) iterations of size len(query_parts) instead of len(query_parts)
# queries of size len(all_keys) -- which hopefully should be a faster data access
# pattern due to caches but in reality shouldn't matter. Note that we have to iterate
# over the keys in all_keys either way, because we wish to check whether query is a
# substring of a key, not whether query is a key.
#
# This does have the side-effect of not having the results be ordered according to
# their order in query_parts, so we instead, we intentionally discard order by using
# a set. This also guarantees that our results are unique.
results = set()
query_parts = queries.split(',')
for key in all_keys:
for query in query_parts:
if query in key:
results.add(key)
return results
def missing_oval(rule_obj):
"""
For a rule object, check if it is missing an OVAL.
Args:
rule_obj (dict): A dictionary representing the rule object. It must contain the keys 'id'
and 'ovals'.
Returns:
str: A message indicating the rule ID that is missing all OVALs, or None if the rule has
OVALs.
"""
rule_id = rule_obj['id']
check = len(rule_obj['ovals']) > 0
if not check:
return "\trule_id:%s is missing all OVALs" % rule_id
def missing_remediation(rule_obj, r_type):
"""
Check if a rule object is missing a remediation of a specified type.
Args:
rule_obj (dict): The rule object containing rule details.
r_type (str): The type of remediation to check for.
Returns:
str: A message indicating the rule ID and the missing remediation type, if the remediation
is missing. Otherwise, returns None.
"""
rule_id = rule_obj['id']
check = (r_type in rule_obj['remediations'] and
len(rule_obj['remediations'][r_type]) > 0)
if not check:
return "\trule_id:%s is missing %s remediations" % (rule_id, r_type)
def two_plus_oval(rule_obj):
"""
Check if a rule object has two or more OVALs.
Args:
rule_obj (dict): A dictionary representing a rule object. It should have the following keys:
- 'id' (str): The identifier of the rule.
- 'ovals' (list): A list of OVAL identifiers associated with the rule.
Returns:
str: A formatted string indicating the rule ID and its associated OVALs if there are two
or more OVALs.
"""
rule_id = rule_obj['id']
check = len(rule_obj['ovals']) >= 2
if check:
return "\trule_id:%s has two or more OVALs: %s" % (rule_id, ','.join(rule_obj['ovals']))
def two_plus_remediation(rule_obj, r_type):
"""
Check if a rule object has two or more remediations of a specified type.
Args:
rule_obj (dict): The rule object containing rule details and remediations.
r_type (str): The type of remediation to check for.
Returns:
str: A formatted string indicating the rule ID and the remediations if there are two or
more of the specified type.
"""
rule_id = rule_obj['id']
check = (r_type in rule_obj['remediations'] and
len(rule_obj['remediations'][r_type]) >= 2)
if check:
return "\trule_id:%s has two or more %s remediations: %s" % \
(rule_id, r_type, ','.join(rule_obj['remediations'][r_type]))
def product_names_oval(rule_obj):
"""
Checks the consistency between the product names and OVAL object names for a given rule object.
Args:
rule_obj (dict): A dictionary representing a rule object. It should contain:
- 'id' (str): The identifier of the rule.
- 'ovals' (dict): A dictionary where keys are OVAL filenames and values are
dictionaries containing 'products' (list of product names).
Returns:
str: A message indicating if there is a mismatch between the product name and OVAL object
name. The message format is "rule_id:<rule_id> has a different product and OVALs names:
<product> is not <oval_product>". Returns None if all product names match their
corresponding OVAL object names.
"""
rule_id = rule_obj['id']
for oval_name in rule_obj['ovals']:
if oval_name == "shared.xml":
continue
oval_product, _ = os.path.splitext(oval_name)
for product in rule_obj['ovals'][oval_name]['products']:
if product != oval_product:
return "\trule_id:%s has a different product and OVALs names: %s is not %s" % \
(rule_id, product, oval_product)
def product_names_remediation(rule_obj, r_type):
"""
Checks the consistency between the scope of platforms and the product names of the
remediations of a given type for a rule object.
Args:
rule_obj (dict): A dictionary representing the rule object, which contains an 'id' key and
a 'remediations' key. The 'remediations' key is a dictionary where keys
are remediation types and values are dictionaries of remediation names
and their associated products.
r_type (str): The type of remediation to check (e.g., 'bash', 'ansible').
Returns:
str: A message indicating the rule ID and the inconsistency found, if any.
The message specifies the rule ID, the remediation type, the product name
that is inconsistent, and the expected product name.
Returns None if no inconsistencies are found.
"""
rule_id = rule_obj['id']
for r_name in rule_obj['remediations'][r_type]:
r_product, _ = os.path.splitext(r_name)
if r_product == "shared":
continue
for product in rule_obj['remediations'][r_type][r_name]['products']:
if product != r_product:
return "\trule_id:%s has a different product and %s remediation names: %s is not %s" % \
(rule_id, r_type, product, r_product)
|