File: rule_dir_stats.py

package info (click to toggle)
scap-security-guide 0.1.76-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 110,644 kB
  • sloc: xml: 241,883; sh: 73,777; python: 32,527; makefile: 27
file content (588 lines) | stat: -rw-r--r-- 23,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
"""
This module contains common code shared by utils/rule_dir_stats.py and utils/rule_dir_diff.py.
This code includes functions for walking the output of the utils/rule_dir_json.py script, and
filtering functions used in both scripts.
"""

from __future__ import absolute_import
from __future__ import print_function

import os
from collections import defaultdict

from .build_remediations import REMEDIATION_TO_EXT_MAP as REMEDIATION_MAP
from .utils import subset_dict


def get_affected_products(rule_obj):
    """
    Extracts and returns the set of affected products from a given rule object.

    Args:
        rule_obj (dict): A dictionary representing a rule, which contains a 'products' key.

    Returns:
        set: A set of products affected by the rule.
    """
    return set(rule_obj['products'])


def get_all_affected_products(args, rule_obj):
    """
    From a rule_obj, return the set of affected products from rule.yml, and all fixes and checks.

    If args.strict is set, this function is equivalent to get_affected_products. Otherwise, it
    includes ovals and fix content based on the values of args.fixes_only and args.ovals_only.

    Args:
        args (Namespace): The arguments passed to the script, containing flags such as strict,
                          fixes_only, and ovals_only.
        rule_obj (dict): The rule object containing information about the rule, including affected
                         products, oval products, and remediation products.

    Returns:
        set: A set of affected products based on the rule object and the provided arguments.
    """
    affected_products = get_affected_products(rule_obj)

    if args.strict:
        return affected_products

    if not args.fixes_only:
        for product in rule_obj['oval_products']:
            affected_products.add(product)

    if not args.ovals_only:
        for product in rule_obj['remediation_products']:
            affected_products.add(product)

    return affected_products


def _walk_rule(args, rule_obj, oval_func, remediation_func, verbose_output):
    """
    Walks a single rule and updates verbose_output if visited.

    Internal function for walk_rules and walk_rules_parallel.

    Args:
        args: An object containing arguments and configurations.
        rule_obj: A dictionary representing the rule to be processed.
        oval_func: A function to process the rule's OVAL definitions.
        remediation_func: A function to process the rule's remediation scripts.
        verbose_output: A dictionary to store detailed output for each rule.

    Returns:
        bool: True if the rule was visited and processed, False otherwise.
    """
    rule_id = rule_obj['id']

    affected_products = get_all_affected_products(args, rule_obj)
    if not affected_products.intersection(args.products):
        return False
    if args.query and rule_id not in args.query:
        return False

    if not args.fixes_only:
        result = oval_func(rule_obj)
        if result:
            verbose_output[rule_id]['oval'] = result

    if not args.ovals_only:
        for r_type in REMEDIATION_MAP:
            result = remediation_func(rule_obj, r_type)
            if result:
                verbose_output[rule_id][r_type] = result

    return True


def walk_rules(args, known_rules, oval_func, remediation_func):
    """
    Walks through a dictionary of known rules, conditionally calling provided functions to
    generate OVAL and remediation content, and returns the number of visited rules along with the
    output for each visited rule.

    Args:
        args (object): An object containing arguments that control the behavior of the function.
        known_rules (dict): A dictionary where keys are rule IDs and values are rule objects.
        oval_func (function): A function to be called for each rule to generate OVAL content.
        remediation_func (function): A function to be called for each rule to generate remediation content.

    Returns:
        tuple:
            affected_rules (int): The number of rules that were visited.
            verbose_output (dict): A dictionary containing the output for each visited rule.

    The output structure is a dict as follows::

        {
            rule_id: {
                "oval": oval_func(args, rule_obj),
                "ansible": remediation_func(args, "ansible", rule_obj),
                "anaconda": remediation_func(args, "anaconda", rule_obj),
                "bash": remediation_func(args, "bash", rule_obj),
                "puppet": remediation_func(args, "puppet", rule_obj)
            },
            ...
        }

    The arguments supplied to oval_func are args and rule_obj.
    The arguments supplied to remediation_func are args, the remediation type, and rule_obj.
    The input rule_obj structure is the value of known_rules[rule_id].
    """
    affected_rules = 0
    verbose_output = defaultdict(lambda: defaultdict(lambda: None))

    for rule_id in known_rules:
        rule_obj = known_rules[rule_id]
        if _walk_rule(args, rule_obj, oval_func, remediation_func, verbose_output):
            affected_rules += 1

    return affected_rules, verbose_output


def walk_rule_stats(rule_output):
    """
    Walk the output of a rule, generating statistics about affected ovals, remediations, and
    generating verbose output in a stable order.

    Args:
        rule_output (dict): The output of a rule containing information about ovals and remediations.

    Returns:
        tuple: A tuple containing the following elements:
            - affected_ovals (int): The number of affected ovals.
            - affected_remediations (int): The number of affected remediations.
            - all_affected_remediations (int): The number of rules where all remediations are affected.
            - affected_remediations_type (defaultdict): A dictionary with the count of each type of affected remediation.
            - all_output (list): A list of all affected ovals and remediations in a stable order.
    """
    affected_ovals = 0
    affected_remediations = 0
    all_affected_remediations = 0
    affected_remediations_type = defaultdict(lambda: 0)
    all_output = []

    affected_remediation = False
    all_remedation = True

    if 'oval' in rule_output:
        affected_ovals += 1
        all_output.append(rule_output['oval'])

    for r_type in sorted(REMEDIATION_MAP):
        if r_type in rule_output:
            affected_remediation = True
            affected_remediations_type[r_type] += 1
            all_output.append(rule_output[r_type])
        else:
            all_remedation = False

    if affected_remediation:
        affected_remediations += 1
    if all_remedation:
        all_affected_remediations += 1

    return (affected_ovals, affected_remediations, all_affected_remediations,
            affected_remediations_type, all_output)


def walk_rules_stats(args, known_rules, oval_func, remediation_func):
    """
    Walk a dictionary of known_rules and generate simple aggregate statistics for all visited rules.

    The oval_func and remediation_func arguments behave according to walk_rules().
    An effort is made to provide consistently ordered verbose_output by sorting all visited keys
    and the keys of ssg.build_remediations.REMEDIATION_MAP.

    Args:
        args: Arguments passed to the function.
        known_rules (dict): A dictionary of known rules to be processed.
        oval_func (function): Function to process OVAL definitions.
        remediation_func (function): Function to process remediations.

    Returns:
        tuple: A tuple containing:
            - affected_rules (int): Number of affected rules.
            - affected_ovals (int): Number of affected OVAL definitions.
            - affected_remediations (int): Number of affected remediations.
            - all_affected_remediations (int): Total number of affected remediations.
            - affected_remediations_type (dict): Dictionary with the count of each type of affected remediation.
            - all_output (list): Ordered output of all functions.
    """
    affected_rules, verbose_output = walk_rules(args, known_rules, oval_func, remediation_func)

    affected_ovals = 0
    affected_remediations = 0
    all_affected_remediations = 0
    affected_remediations_type = defaultdict(lambda: 0)
    all_output = []

    for rule_id in sorted(verbose_output):
        rule_output = verbose_output[rule_id]
        results = walk_rule_stats(rule_output)

        affected_ovals += results[0]
        affected_remediations += results[1]
        all_affected_remediations += results[2]
        for key in results[3]:
            affected_remediations_type[key] += results[3][key]

        all_output.extend(results[4])

    return (affected_rules, affected_ovals, affected_remediations,
            all_affected_remediations, affected_remediations_type, all_output)


def walk_rules_parallel(args, left_rules, right_rules, oval_func, remediation_func):
    """
    Walks two sets of known_rules (left_rules and right_rules) with identical keys and returns
    left_only, right_only, and common_only output from _walk_rule.

    If the outputted data for a rule when called on left_rules and right_rules is the same, it is
    added to common_only. Only rules which output different data will have their data added to
    left_only and right_only respectively.

    Args:
        args: Arguments to be passed to the _walk_rule function.
        left_rules (dict): Dictionary of rules on the left side.
        right_rules (dict): Dictionary of rules on the right side.
        oval_func (function): Function to process OVAL definitions.
        remediation_func (function): Function to process remediation scripts.

    Returns:
        tuple: A tuple containing three elements:
            - left_only (tuple): A tuple containing the count of affected rules and the verbose
              output for rules only in left_rules.
            - right_only (tuple): A tuple containing the count of affected rules and the verbose
              output for rules only in right_rules.
            - common_only (tuple): A tuple containing the count of affected rules and the verbose
              output for rules common to both left_rules and right_rules.

    Raises:
        AssertionError: If the sets of keys in left_rules and right_rules are not identical.
    """
    left_affected_rules = 0
    right_affected_rules = 0
    common_affected_rules = 0

    left_verbose_output = defaultdict(lambda: defaultdict(lambda: None))
    right_verbose_output = defaultdict(lambda: defaultdict(lambda: None))
    common_verbose_output = defaultdict(lambda: defaultdict(lambda: None))

    assert set(left_rules) == set(right_rules)

    for rule_id in left_rules:
        left_rule_obj = left_rules[rule_id]
        right_rule_obj = right_rules[rule_id]

        if left_rule_obj == right_rule_obj:
            if _walk_rule(args, left_rule_obj, oval_func, remediation_func, common_verbose_output):
                common_affected_rules += 1
        else:
            left_temp = defaultdict(lambda: defaultdict(lambda: None))
            right_temp = defaultdict(lambda: defaultdict(lambda: None))

            left_ret = _walk_rule(args, left_rule_obj, oval_func, remediation_func, left_temp)
            right_ret = _walk_rule(args, right_rule_obj, oval_func, remediation_func, right_temp)

            if left_ret == right_ret and left_temp == right_temp:
                common_verbose_output.update(left_temp)
                if left_ret:
                    common_affected_rules += 1
            else:
                left_verbose_output.update(left_temp)
                right_verbose_output.update(right_temp)
                if left_ret:
                    left_affected_rules += 1
                if right_ret:
                    right_affected_rules += 1

    left_only = (left_affected_rules, left_verbose_output)
    right_only = (right_affected_rules, right_verbose_output)
    common_only = (common_affected_rules, common_verbose_output)

    return left_only, right_only, common_only


def walk_rules_diff(args, left_rules, right_rules, oval_func, remediation_func):
    """
    Walk through two dictionaries of known rules and generate five sets of output.

    Does not understand renaming of rule_ids as this would depend on disk content to reflect these
    differences. Unless significantly more data is added to the rule_obj structure (contents of
    rule.yml, ovals, remediations, etc.), all information besides 'title' is not uniquely
    identifying or could be easily updated.

    Args:
        args: Arguments to be passed to the walk_rules and walk_rules_parallel functions.
        left_rules (dict): Dictionary of rules on the left side.
        right_rules (dict): Dictionary of rules on the right side.
        oval_func (function): Function to process OVAL definitions.
        remediation_func (function): Function to process remediation scripts.

    Returns:
        tuple: A five-tuple containing:
            - left_only_data: Data for rules only in left_rules.
            - right_only_data: Data for rules only in right_rules.
            - left_changed_data: Data for rules in both left_rules and right_rules but changed in left_rules.
            - right_changed_data: Data for rules in both left_rules and right_rules but changed in right_rules.
            - common_data: Data for rules common to both left_rules and right_rules.
    """
    left_rule_ids = set(left_rules)
    right_rule_ids = set(right_rules)

    left_only_rule_ids = left_rule_ids.difference(right_rule_ids)
    right_only_rule_ids = right_rule_ids.difference(left_rule_ids)
    common_rule_ids = left_rule_ids.intersection(right_rule_ids)

    left_restricted = subset_dict(left_rules, left_only_rule_ids)
    left_common = subset_dict(left_rules, common_rule_ids)
    right_restricted = subset_dict(right_rules, right_only_rule_ids)
    right_common = subset_dict(right_rules, common_rule_ids)

    left_only_data = walk_rules(args, left_restricted, oval_func, remediation_func)
    right_only_data = walk_rules(args, right_restricted, oval_func, remediation_func)
    l_c_d, r_c_d, c_d = walk_rules_parallel(args, left_common, right_common,
                                            oval_func, remediation_func)

    left_changed_data = l_c_d
    right_changed_data = r_c_d
    common_data = c_d

    return (left_only_data, right_only_data, left_changed_data, right_changed_data, common_data)


def walk_rules_diff_stats(results):
    """
    Takes the results of walk_rules_diff (results) and generates five sets of output statistics.

    Args:
        results (list): A list of five elements, where each element is a tuple containing affected
                        rules and verbose output.

    Returns:
        tuple: A tuple containing five elements, each representing the statistics for left_only
               rules, right_only rules, shared left rules, shared right rules, and shared common
               rules. Each element in the tuple is itself a tuple containing:
               - affected_rules (int): Number of affected rules.
               - affected_ovals (int): Number of affected OVAL definitions.
               - affected_remediations (int): Number of affected remediations.
               - all_affected_remediations (int): Total number of affected remediations.
               - affected_remediations_type (dict): Dictionary with remediation types as keys and
                                                    counts as values.
               - all_output (list): List of all output data.

    Raises:
        AssertionError: If the length of results is not 5 or the length of output_data is not 5.
    """
    assert len(results) == 5

    output_data = []

    for data in results:
        affected_rules, verbose_output = data

        affected_ovals = 0
        affected_remediations = 0
        all_affected_remediations = 0
        affected_remediations_type = defaultdict(lambda: 0)
        all_output = []

        for rule_id in sorted(verbose_output):
            rule_output = verbose_output[rule_id]
            _results = walk_rule_stats(rule_output)

            affected_ovals += _results[0]
            affected_remediations += _results[1]
            all_affected_remediations += _results[2]
            for key in _results[3]:
                affected_remediations_type[key] += _results[3][key]

            all_output.extend(_results[4])

        output_data.append((affected_rules, affected_ovals,
                            affected_remediations, all_affected_remediations,
                            affected_remediations_type, all_output))

    assert len(output_data) == 5

    return tuple(output_data)


def filter_rule_ids(all_keys, queries):
    """
    Filters a set of keys based on a set of queries.

    A set of queries is a comma separated list of queries, where a query is either a rule id or
    a substring thereof.

    Args:
        all_keys (iterable): An iterable containing all possible keys.
        queries (str): A comma-separated list of queries, where each query is either a rule id or
                       a substring thereof. If the literal string "all" is provided, all keys are
                       returned.

    Returns:
        set: A set of keys from all_keys that match any of the queries. If queries is empty, an
             empty set is returned. If queries is "all", all keys are returned.
    """
    if not queries:
        return set()

    if queries == 'all':
        return set(all_keys)

    # We assume that all_keys is much longer than queries; this allows us to do
    # len(all_keys) iterations of size len(query_parts) instead of len(query_parts)
    # queries of size len(all_keys) -- which hopefully should be a faster data access
    # pattern due to caches but in reality shouldn't matter. Note that we have to iterate
    # over the keys in all_keys either way, because we wish to check whether query is a
    # substring of a key, not whether query is a key.
    #
    # This does have the side-effect of not having the results be ordered according to
    # their order in query_parts, so we instead, we intentionally discard order by using
    # a set. This also guarantees that our results are unique.
    results = set()
    query_parts = queries.split(',')
    for key in all_keys:
        for query in query_parts:
            if query in key:
                results.add(key)

    return results


def missing_oval(rule_obj):
    """
    For a rule object, check if it is missing an OVAL.

    Args:
        rule_obj (dict): A dictionary representing the rule object. It must contain the keys 'id'
                         and 'ovals'.

    Returns:
        str: A message indicating the rule ID that is missing all OVALs, or None if the rule has
             OVALs.
    """
    rule_id = rule_obj['id']
    check = len(rule_obj['ovals']) > 0
    if not check:
        return "\trule_id:%s is missing all OVALs" % rule_id


def missing_remediation(rule_obj, r_type):
    """
    Check if a rule object is missing a remediation of a specified type.

    Args:
        rule_obj (dict): The rule object containing rule details.
        r_type (str): The type of remediation to check for.

    Returns:
        str: A message indicating the rule ID and the missing remediation type, if the remediation
             is missing. Otherwise, returns None.
    """
    rule_id = rule_obj['id']
    check = (r_type in rule_obj['remediations'] and
             len(rule_obj['remediations'][r_type]) > 0)
    if not check:
        return "\trule_id:%s is missing %s remediations" % (rule_id, r_type)


def two_plus_oval(rule_obj):
    """
    Check if a rule object has two or more OVALs.

    Args:
        rule_obj (dict): A dictionary representing a rule object. It should have the following keys:
            - 'id' (str): The identifier of the rule.
            - 'ovals' (list): A list of OVAL identifiers associated with the rule.

    Returns:
        str: A formatted string indicating the rule ID and its associated OVALs if there are two
             or more OVALs.
    """
    rule_id = rule_obj['id']
    check = len(rule_obj['ovals']) >= 2
    if check:
        return "\trule_id:%s has two or more OVALs: %s" % (rule_id, ','.join(rule_obj['ovals']))


def two_plus_remediation(rule_obj, r_type):
    """
    Check if a rule object has two or more remediations of a specified type.

    Args:
        rule_obj (dict): The rule object containing rule details and remediations.
        r_type (str): The type of remediation to check for.

    Returns:
        str: A formatted string indicating the rule ID and the remediations if there are two or
             more of the specified type.
    """
    rule_id = rule_obj['id']
    check = (r_type in rule_obj['remediations'] and
             len(rule_obj['remediations'][r_type]) >= 2)
    if check:
        return "\trule_id:%s has two or more %s remediations: %s" % \
               (rule_id, r_type, ','.join(rule_obj['remediations'][r_type]))


def product_names_oval(rule_obj):
    """
    Checks the consistency between the product names and OVAL object names for a given rule object.

    Args:
        rule_obj (dict): A dictionary representing a rule object. It should contain:
            - 'id' (str): The identifier of the rule.
            - 'ovals' (dict): A dictionary where keys are OVAL filenames and values are
                              dictionaries containing 'products' (list of product names).

    Returns:
        str: A message indicating if there is a mismatch between the product name and OVAL object
             name. The message format is "rule_id:<rule_id> has a different product and OVALs names:
             <product> is not <oval_product>". Returns None if all product names match their
             corresponding OVAL object names.
    """
    rule_id = rule_obj['id']
    for oval_name in rule_obj['ovals']:
        if oval_name == "shared.xml":
            continue

        oval_product, _ = os.path.splitext(oval_name)
        for product in rule_obj['ovals'][oval_name]['products']:
            if product != oval_product:
                return "\trule_id:%s has a different product and OVALs names: %s is not %s" % \
                       (rule_id, product, oval_product)


def product_names_remediation(rule_obj, r_type):
    """
    Checks the consistency between the scope of platforms and the product names of the
    remediations of a given type for a rule object.

    Args:
        rule_obj (dict): A dictionary representing the rule object, which contains an 'id' key and
                         a 'remediations' key. The 'remediations' key is a dictionary where keys
                         are remediation types and values are dictionaries of remediation names
                         and their associated products.
        r_type (str): The type of remediation to check (e.g., 'bash', 'ansible').

    Returns:
        str: A message indicating the rule ID and the inconsistency found, if any.
             The message specifies the rule ID, the remediation type, the product name
             that is inconsistent, and the expected product name.
             Returns None if no inconsistencies are found.
    """
    rule_id = rule_obj['id']
    for r_name in rule_obj['remediations'][r_type]:
        r_product, _ = os.path.splitext(r_name)
        if r_product == "shared":
            continue

        for product in rule_obj['remediations'][r_type][r_name]['products']:
            if product != r_product:
                return "\trule_id:%s has a different product and %s remediation names: %s is not %s" % \
                       (rule_id, r_type, product, r_product)