1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
<html>
<head><title>Scapy</title>
</head>
<body>
<H1>Scapy</H1>
Download version 0.9.15beta : <a href="../python/scapy.py">scapy.py</a> (needs python >= 2.2) (works only on linux for the moment)<br>
Get the archive <a href="../python/scapy-0.9.15.tgz">scapy-0.9.15.tgz</a> (man page, ChangeLogs, etc.)<br>
See <a href="../python/scapy-changelog.txt">changelog</a>, <a href="#bugs">bugs</a>, <a href="#todolist">todo list</a>.<br>
The "work-in-progress" version is <a href="../python/scapy-dev.py">here</a><br>
Packages: <a href=http://packages.debian.org/unstable/net/scapy.html>debian</a>, <a href=http://dag.wieers.com/packages/scapy/>RPM</a><br>
<br>
Download the <a href="../conf/scapy_lsm2003.pdf">scapy presentation slides</a>, LSM03<br>
You will also find an article in Linux Magazine (France) 52.<br>
<br>
Bugs, suggestions, etc → <a href="mailto:biondi@cartel-securite.fr">biondi@cartel-securite.fr</a>.<br>
Mailing-list: <a href="mailto:scapy@scapy.tuxfamily.org">scapy@scapy.tuxfamily.org</a> (subscribe: <a href="mailto:scapy-subscribe@scapy.tuxfamily.org">scapy-subscribe@scapy.tuxfamily.org</a>) (<a href="http://listes.tuxfamily.org/?A=LIST&L=scapy_scapy.tuxfamily.org">Archive</a>)
<p>
<h2>Intro</h2>
Scapy is a powerful interactive packet manipulation tool, packet generator, network scanner, network discovery, packet sniffer,
etc. It can for the moment replace hping, 85% of nmap, arpspoof, arp-sk, arping, tcpdump, tethereal, p0f, ....
<p>
Scapy uses the python interpreter as a command board. That means that you can use
directly python language (assign variables, use loops, define functions, etc.)
If you give a file as parameter when you run scapy, your session (variables, functions,
intances, ...) will be saved when you leave the interpretor, and restored
the next time you launch scapy.
<p>
Scapy is not user proof yet. But it is almost reliable. Some more things need to be done
to support more platforms.
<P>
The idea is simple. Those kind of tools do two things : sending packets and
receiving answers. That's what scapy does : you define a set of packets,
it sends them, receives answers, matches requests with answers and
returns a list of packet couples (request, answer) and a list of
unmatched packets. This has the big advantage over tools like nmap or hping
that an answer is not reduced to (open/closed/filtered), but is the
whole packet.
<!--<p>
Sending a packet can be done at layer 2 (eg Ethernet, 802.3,.. ) or layer 3
(eg IP), using PF_INET/SOCK_RAW (Layer 3, portability, everything done by
the kernel), using PF_PACKET (Layer 2, bypass local firewall, but
lot of things to do by hand for level 3 (routing, arp stack, ...))
-->
<P>
On top of this can be build more high level functions, for example one that
does traceroutes and give as a result only the start TTL of the request
and the source IP of the answer. One that pings a whole network
and gives the list of machines answering. One that does a portscan and
returns a LaTeX report.
<P>
<h2>Quick demo : an interactive session</h2>
If you are new to python and you really don't understand a word because of that,
or if you want to learn this language, take an hour to read the very good tutorial
from Guido Van Rossum here: <a href="http://www.python.org/doc/current/tut/tut.html">http://www.python.org/doc/current/tut/tut.html</a>. After that, you'll know python :) (really!)
<p>
First, we introduce the <tt>Net</tt> class, which implicitely defines a set of IP addresses. Note that this class does not need to be used to give set of addresses as parameters, it will be automatically used.
We also see that sessions work :)
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width="600px"><pre>
# ./scapy.py -s mysession
New session [mysession]
Welcome to Scapy (0.9beta)
>>> Net("192.168.1.0/24")
<Net 192.168.1.0/24>
>>> target=Net("www.target.com")
>>> targetnet=Net("www.target.com/30")
>>> [ip for ip in targetnet]
['173.29.39.100', '173.29.39.101', '173.29.39.102', '173.29.39.103']
>>> ^D
# ./scapy.py -s mysession
Using session [mysession]
Welcome to Scapy (0.9beta)
>>> target
<Net www.target.com>
</pre></td></tr></table></center>
<p>
The configuration is hold into a variable named <tt>conf</tt>, that
is saved with the session.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width="600px"><pre>
>>> conf
L2listen = <class scapy.L2ListenSocket at 0x83a77dc>
L2socket = <class scapy.L2Socket at 0x83aabbc>
L3socket = <class scapy.L3PacketSocket at 0x83aa8cc>
filter = 'not implemented'
histfile = '/home/pbi/.scapy_history'
iff = 'eth0'
promisc = 'not implemented'
session = ''
sniff_promisc = 0
stealth = 'not implemented'
verb = 2
>>> conf.verb=1
</pre></td></tr></table></center>
<p>
Now, let's manipulate some packets. Here you can see layers that are supported for the moment. It's
really easy to add one.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> ls()
DNSRR : DNS Resource Record
DNSQR : DNS Question Record
LLC : LLC
Dot1Q : 802.1Q
ICMPerror : ICMP in ICMP citation
Ether : Ethernet
Raw : Raw
LLPPP : PPP Link Layer
TCP : TCP
TCPerror : TCP in ICMP citation
ICMP : ICMP
Dot3 : 802.3
Packet : abstract packet
IP : IP
Padding : Padding
IPerror : IP in ICMP citation
ARP : ARP
DNS : DNS
EAPOL : EAPOL
UDPerror : UDP in ICMP citation
STP : Spanning Tree Protocol
UDP : UDP
EAP : EAP
>>> ls(Ether)
dst : DestMACField (None)
src : SourceMACField (None)
type : XShortField (0)
>>> ls(IP)
version : BitField (4)
ihl : BitField (None)
tos : XByteField (0)
len : ShortField (None)
id : ShortField (1)
flags : BitField (0)
frag : BitField (0)
ttl : ByteField (64)
proto : ByteField (0)
chksum : XShortField (None)
src : SourceIPField (None)
dst : IPField ('127.0.0.1')
options : IPoptionsField ('')
>>> IP()
<IP |''>
>>> a=IP(dst="172.16.1.40")
>>> a
<IP dst=172.16.1.40 |''>
>>> a.dst
'172.16.1.40'
>>> a.ttl
64
</pre></td></tr></table></center>
A layer has default values for every field, so that you don't have to fill them all.
If you give a value to the field, it will overload the default value. If you delete the field,
the default value will be back. Moreover, fields with default values are not displayed.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> a.ttl=32
>>> a
<IP dst=172.16.1.40 ttl=32 |''>
>>> del(a.ttl)
>>> a
<IP dst=172.16.1.40 |''>
>>> a.ttl
64
</pre></td></tr></table></center>
Fields can be done human readable. For example IP and TCP flags : (note the rfc3514 compliance for IP).
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> t=TCP()
>>> t.flags="SA"
>>> t.flags
18
>>> t
<TCP flags=SA |>
>>> t.flags=23
>>> t
<TCP flags=FSRA |>
>>>
>>> i=IP(flags="DF+MF")
>>> i.flags
3
>>> i
<IP flags=MF+DF |>
>>> i.flags=6
>>> i
<IP flags=DF+evil |>
</pre></td></tr></table></center>
Some default values are not constant values. For example, the source IP of a packet will default
to the IP of the interface that should be used to send a packet to the given destination, according
to the local routing tables.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> a.dst
'172.16.1.40'
>>> a.src
'172.16.1.24'
>>> del(a.dst)
>>> a.dst
'127.0.0.1'
>>> a.src
'127.0.0.1'
>>> a.dst="192.168.11.10"
>>> a.src
'192.168.11.1'
>>> a.dst=target
>>> a.src
'172.16.1.24'
>>> a.src="1.2.3.4"
>>> a
<IP src=1.2.3.4 dst=<Net www.target.com> |''>
</pre></td></tr></table></center>
Here, you can guess that my routing table looks like :
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0
192.168.11.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 172.16.1.1 0.0.0.0 UG 0 0 0 eth0
</pre></td></tr></table></center>
<p>
The <tt>/</tt> operator has been used as a composition operator between two layers. When doing so,
the lower layer can have one or more of its defaults fields overloaded according to the upper layer.
(You still can give the value you want). A string can be used as a raw layer.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> IP()
<IP |''>
>>> IP()/TCP()
<IP proto=6 |<TCP |''>>
>>> Ether()/IP()/TCP()
<Ether type=0x800 |<IP proto=6 |<TCP |''>>>
>>> IP()/TCP()/"GET /index.html HTTP/1.0\n\n"
<IP proto=6 |<TCP |<Raw load='GET /index.html HTTP/1.0\n\n' |''>>>
>>> Ether()/IP()/IP()/IP()/UDP()
<Ether type=0x800 |<IP proto=0 |<IP proto=0 |<IP proto=17 |<UDP |''>>>>>
>>> IP(proto=55)/TCP()
<IP proto=55 |<TCP |''>>
</pre></td></tr></table></center>
<p>
Each packet can be build or dissected (note: in python <tt>_</tt> (underscode) is the latest result) :
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> str(IP())
'E\x00\x00\x14\x00\x01\x00\x00@\x00|\xe7\x7f\x00\x00\x01\x7f\x00\x00\x01'
>>> IP(_)
<IP frag=0 src=127.0.0.1 proto=0 tos=0x0 dst=127.0.0.1 chksum=0x7ce7 len=20 version=4 flags=0 ihl=5 ttl=64 id=1 |''>
>>> a=Ether()/IP(dst=target)/TCP()/"GET /index.html HTTP/1.0 \n\n"
>>> b=str(a)
>>> b
'\x00\x90\x7f\x1e \xc8\x00\x03G\x88\x1d/\x08\x00E\x00\x00C\x00\x01\x00\x00@\x06
\xcd7\xac\x10\x01\x18\xad\x1d\'e\x00P\x00P\x00\x00\x00\x00\x00\x00\x00\x00P\x0
2\x00\x00/\xf9\x00\x00GET /index.html HTTP/1.0 \n\n'
>>> c=Ether(b)
>>> c
<Ether src=00:03:47:88:1d:2f dst=00:90:7f:1e:26:c8 type=0x800 |<IP frag=0
src=172.16.1.24 proto=6 tos=0x0 dst=173.29.39.101 chksum=0xcd37 len=67 options='' version=4
flags=0 ihl=5 ttl=64 id=1 |<TCP reserved=0 seq=0L ack=0L dataofs=5 dport=80 window=0
flags=0x2 chksum=0x2ff9 urgptr=0 sport=80 options='' | <Raw load='GET /index.html HTTP/1.0 \n\n' |''>>>>
</pre></td></tr></table></center>
We see that a dissected packet has all its fields filled. That's because I consider that
each field has its value imposed by the original string. If this is too verbose,
the method <tt>hide_defaults()</tt> will delete every field that has the same value
as the default.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> c.hide_defaults()
>>> c
<Ether src=00:03:47:88:1d:2f dst=00:90:7f:1e:26:c8 type=0x800 |<IP src=172.16.1.24
proto=6 dst=173.29.39.101 chksum=0xcd37 len=67 ihl=5 |<TCP dataofs=5 chksum=0x2ff9 |
<Raw load='GET /index.html HTTP/1.0 \n\n' |''>>>>
</pre></td></tr></table></center>
<p>
For the moment, we have only generated one packet. Let see how to specify sets of packets as easily.
Each field of the whole packet (ever layers) can be a set. This implicidely define a set of packets,
generated using a kind of cartesian product between all the fields.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> a=IP(dst=targetnet)
>>> a
<IP dst=<Net www.target.com/30> |''>
>>> [p for p in a]
[<IP dst=173.29.39.100 |''>, <IP dst=173.29.39.101 |''>, <IP dst=173.29.39.102 |''>, <IP dst=173.29.39.103 |''>]
>>> b=IP(ttl=[1,2,(5,9)])
>>> b
<IP ttl=[1, 2, (5, 9)] |''>
>>> [p for p in b]
[<IP ttl=1 |''>, <IP ttl=2 |''>, <IP ttl=5 |''>, <IP ttl=6 |''>,
<IP ttl=7 |''>, <IP ttl=8 |''>, <IP ttl=9 |''>]
>>> c=TCP(dport=[80,443])
>>> [p for p in a/c]
[<IP dst=173.29.39.100 proto=6 |<TCP dport=80 |''>>, <IP dst=173.29.39.100 proto=6 |<TCP dport=443 |''>>,
<IP dst=173.29.39.101 proto=6 |<TCP dport=80 |''>>, <IP dst=173.29.39.101 proto=6 |<TCP dport=443 |''>>,
<IP dst=173.29.39.102 proto=6 |<TCP dport=80 |''>>, <IP dst=173.29.39.102 proto=6 |<TCP dport=443 |''>>,
<IP dst=173.29.39.103 proto=6 |<TCP dport=80 |''>>, <IP dst=173.29.39.103 proto=6 |<TCP dport=443 |''>>]
</pre></td></tr></table></center>
Some operations (like building the string from a packet) can't work on a set of packets.
In these cases, if you forgot to unroll your set of packets, only the first element
of the list you forgot to generate will be used to assemble the packet.
<p>
Now, let's try to do some fun things.
The <tt>sr()</tt> function is for sending packets and receiving answers.
The function returns a couple of packet and answers, and the unanswered packets.
The function <tt>sr1()</tt> is a variant that only return one packet that answered the packet
(or the packet set) sent. The packets must be layer 3 packets (IP, ARP, etc.).
The function <tt>srp()</tt> do the same for layer 2 packets (Ethernet, 802.3, etc.).
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> p=sr1(IP(dst="172.16.1.40")/ICMP()/"XXXXXXXXXXX")
Finished to send 1 packets.
*
Received 1 packets, got 1 answers, remaining 0 packets
>>> p
<IP frag=0 src=172.16.1.40 proto=1 tos=0x0 dst=172.16.1.24 chksum=0xd56c
len=39 options='' version=4 flags= ihl=5 ttl=255 id=35848 |<ICMP code=0
type=echo-reply id=0x0 seq=0x0 chksum=0xee45 |<Raw load='XXXXXXXXXXX' |
<Padding load='\x00\x00\x00\x00\x00\x00\x00' |>>>>
>>> p.display()
---[ IP ]---
version = 4
ihl = 5
tos = 0x0
len = 39
id = 35848
flags =
frag = 0
ttl = 255
proto = ICMP
chksum = 0xd56c
src = 172.16.1.40
dst = 172.16.1.24
options = ''
---[ ICMP ]---
type = echo-reply
code = 0
chksum = 0xee45
id = 0x0
seq = 0x0
---[ Raw ]---
load = 'XXXXXXXXXXX'
---[ Padding ]---
load = '\x00\x00\x00\x00\x00\x00\x00'
</pre></td></tr></table></center>
<p>
A TCP traceroute.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> ans,unans=sr(IP(dst=target, ttl=(4,25),id=RandShort())/TCP(flags=0x2))
*****.******.*.***..*.**Finished to send 22 packets.
***......
Received 33 packets, got 21 answers, remaining 1 packets
>>> for snd,rcv in ans:
... print snd.ttl, rcv.src, isinstance(rcv.payload, TCP)
...
5 194.51.159.65 0
6 194.51.159.49 0
4 194.250.107.181 0
7 193.251.126.34 0
8 193.251.126.154 0
9 193.251.241.89 0
10 193.251.241.110 0
11 193.251.241.173 0
13 208.172.251.165 0
12 193.251.241.173 0
14 208.172.251.165 0
15 206.24.226.99 0
16 206.24.238.34 0
17 173.109.66.90 0
18 173.109.88.218 0
19 173.29.39.101 1
20 173.29.39.101 1
21 173.29.39.101 1
22 173.29.39.101 1
23 173.29.39.101 1
24 173.29.39.101 1
</pre></td></tr></table></center>
<p>
A DNS query (rd = recursion desired).
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> sr1(IP(dst="172.16.1.40")/UDP()/DNS(rd=1,qd=DNSQR(qname="www.target.com")))
Finished to send 1 packets.
.*
Received 2 packets, got 1 answers, remaining 0 packets
<IP frag=0 src=172.16.1.40 proto=UDP tos=0x0 dst=172.16.1.24 chksum=0xdfb8
len=212 options='' version=4 flags=DF ihl=5 ttl=64 id=0 |<UDP dport=80
sport=53 len=192 chksum=0x188 |<DNS aa=0 qr=1 an=<DNSRR rdata='173.29.33.99'
ttl=300L rrname='www.target.com.' type=A class=IN |> ns=<DNSRR
rdata='ns4.target.com.' ttl=345600L rrname='target.com.' type=NS class=IN
|<DNSRR rdata='ns1.target.com.' ttl=345600L rrname='target.com.' type=NS
class=IN |<DNSRR rdata='ns2.target.com.' ttl=345600L rrname='target.com.'
type=NS class=IN |<DNSRR rdata='ns3.target.com.' ttl=345600L
rrname='target.com.' type=NS class=IN |>>>> nscount=4 qdcount=1
tc=0 ancount=1 rd=1 arcount=4 ar=<DNSRR rdata='173.29.32.10' ttl=326818L
rrname='ns1.target.com.' type=A class=IN |<DNSRR rdata='173.29.34.10'
ttl=326818L rrname='ns2.target.com.' type=A class=IN |<DNSRR
rdata='173.29.36.10' ttl=326818L rrname='ns3.target.com.' type=A class=IN
|<DNSRR rdata='173.29.38.10' ttl=326818L rrname='ns4.target.com.' type=A
class=IN |>>>> opcode=0 ra=1 z=0 rcode=0 id=0 qd=<DNSQR
qclass=IN qtype=A qname='www.target.com.' |> |>>>
>>> _.an
<DNSRR rdata='173.29.33.99' ttl=300L rrname='www.target.com.' type=A class=IN |>
</pre></td></tr></table></center>
<p>
The process of sending packets and receiving is quite complicated. As I wanted to use the PF_PACKET
interface to go through netfilter, I also needed to implement an ARP stack and ARP cache, and a LL
stack. Well it seems to work, on ethernet and PPP interfaces, but I don't guarantee anything.
Anyway, the fact I used a kind of super-socket for that mean that you can switch your IO layer
very easily, and use PF_INET/SOCK_RAW, or use PF_PACKET at level 2 (giving the LL header (ethernet,...)
and giving yourself mac addresses, ...).
I've just added a super socket which use libdnet and libpcap, so that it should be portable :
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> conf.L3socket=L3dnetSocket
>>> conf.L3listen=L3pcapListenSocket
</pre></td></tr></table></center>
<p>
We can easily capture some packets or even clone tcpdump or tethereal. If no interface is given,
sniffing will happen on every interfaces.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> sniff(count=2)
[<Ether src=00:d0:b7:88:50:f2 dst=00:03:47:88:1d:2f type=0x800 |<IP frag=0
src=172.16.1.40 proto=1 tos=0x0 dst=172.16.1.24 chksum=0x3974 len=84 options=''
version=4 flags=0 ihl=5 ttl=255 id=10196 |<ICMP code=0 type=0 id=0xdc0f
seq=0x7138 chksum=0x25e5 |<Raw load='>r\x15f\x00\x07M\xf0\x08\t\n\x0b
\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e
\x1f !"#$%&\'()*+,-./01234567' |''>>>>,
<Ether src=00:d0:b7:88:50:f2 dst=00:03:47:88:1d:2f type=0x800 |<IP frag=0
src=172.16.1.40 proto=1 tos=0x0 dst=172.16.1.24 chksum=0x3973 len=84 options=''i
version=4 flags=0 ihl=5 ttl=255 id=10197 |<ICMP code=0 type=0 id=0xdc0f
seq=0x7238 chksum=0x1792 |<Raw load='>r\x15f\x00\x07[C\x08\t\n\x0b\x0c\r\x0e
\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'
()*+,-./01234567' |''>>>>]
>>> sniff(iface="wifi0", prn=lambda x: x.summary())
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info Rates / Info DSset / Info TIM / Info 133
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID / Info Rates
802.11 Management 5 00:0a:41:ee:a5:50 / 802.11 Probe Response / Info SSID / Info Rates / Info DSset / Info 133
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID / Info Rates
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID / Info Rates
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info Rates / Info DSset / Info TIM / Info 133
802.11 Management 11 00:07:50:d6:44:3f / 802.11 Authentication
802.11 Management 11 00:0a:41:ee:a5:50 / 802.11 Authentication
802.11 Management 0 00:07:50:d6:44:3f / 802.11 Association Request / Info SSID / Info Rates / Info 133 / Info 149
802.11 Management 1 00:0a:41:ee:a5:50 / 802.11 Association Response / Info Rates / Info 133 / Info 149
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info Rates / Info DSset / Info TIM / Info 133
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info Rates / Info DSset / Info TIM / Info 133
ARP who has 172.20.70.172 says 172.20.70.171 / Padding
ARP is at 00:0a:b7:4b:9c:dd says 172.20.70.172 / Padding
ICMP echo-request 0 / Raw
ICMP echo-reply 0 / Raw
>>> sniff(iface="lo", prn=lambda x: x.display())
---[ Ethernet ]---
dst = 00:00:00:00:00:00
src = 00:00:00:00:00:00
type = 0x800
---[ IP ]---
version = 4
ihl = 5
tos = 0x0
len = 84
id = 0
flags = 2
frag = 0
ttl = 64
proto = 1
chksum = 0x3ca7
src = 127.0.0.1
dst = 127.0.0.1
options = ''
---[ ICMP ]---
type = echo-request
code = 0
chksum = 0x4f7c
id = 0xe10f
seq = 0x0
---[ Raw ]---
load = '>r\x15\xe0\x00\n\x88\x14\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11
\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./01234567'
---[ Ethernet ]---
dst = 00:00:00:00:00:00
src = 00:00:00:00:00:00
type = 0x800
---[ IP ]---
version = 4
ihl = 5
tos = 0x0
len = 84
id = 35452
flags = 0
frag = 0
ttl = 64
proto = 1
chksum = 0xf22a
src = 127.0.0.1
dst = 127.0.0.1
options = ''
---[ ICMP ]---
type = echo-reply
code = 0
chksum = 0x577c
id = 0xe10f
seq = 0x0
---[ Raw ]---
load = '>r\x15\xe0\x00\n\x88\x14\x08\t\n\x0b\x0c\r\x0e\x0f\x10
\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./01234567'
</pre></td></tr></table></center>
<p>
We can sniff and do passive OS fingerprinting.
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> p
<Ether src=00:40:33:96:7b:60 dst=00:10:4b:b3:7d:4e type=0x800 |<IP frag=0
src=192.168.8.10 proto=6 tos=0x10 dst=192.168.8.1 chksum=0xb85e len=60
options='' version=4 flags=2 ihl=5 ttl=64 id=61681 |<TCP reserved=0
seq=2023566040L ack=0L dataofs=10 dport=80 window=5840 flags=SEC
chksum=0x570c urgptr=0 sport=46511 options={'Timestamp': (342940201L, 0L),
'MSS': 1460, 'NOP': (), 'SAckOK': '', 'WScale': 0} |''>>>
>>> p0f(p)
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
>>> a=sniff(prn=prnp0f)
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
(0.875, ['Linux 2.4.2 - 2.4.14 (1)', 'Linux 2.4.10 (1)', 'Windows 98 (?)'])
(1.0, ['Windows 2000 (9)'])
</pre></td></tr></table></center>
The number before the OS guess is the accurracy of the guess.
<p>
Demo of both bpf filter and <tt>sprintf()</tt> method :
<center><table bgcolor="#f0fff0" border=1 cellspacing=0><tr><td width=600px><pre>
>>> a=sniff(filter="tcp and ( port 25 or port 110 )",
prn=lambda x: x.sprintf("%IP.src%:%TCP.sport% -> %IP.dst%:%TCP.dport% %2s,TCP.flags% : %TCP.payload%"))
192.168.8.10:47226 -> 213.228.0.14:110 S :
213.228.0.14:110 -> 192.168.8.10:47226 SA :
192.168.8.10:47226 -> 213.228.0.14:110 A :
213.228.0.14:110 -> 192.168.8.10:47226 PA : +OK <13103.1048117923@pop2-1.free.fr>
192.168.8.10:47226 -> 213.228.0.14:110 A :
192.168.8.10:47226 -> 213.228.0.14:110 PA : USER toto
213.228.0.14:110 -> 192.168.8.10:47226 A :
213.228.0.14:110 -> 192.168.8.10:47226 PA : +OK
192.168.8.10:47226 -> 213.228.0.14:110 A :
192.168.8.10:47226 -> 213.228.0.14:110 PA : PASS tata
213.228.0.14:110 -> 192.168.8.10:47226 PA : -ERR authorization failed
192.168.8.10:47226 -> 213.228.0.14:110 A :
213.228.0.14:110 -> 192.168.8.10:47226 FA :
192.168.8.10:47226 -> 213.228.0.14:110 FA :
213.228.0.14:110 -> 192.168.8.10:47226 A :
</pre></td></tr></table></center>
<p><p>
Soon to come : examples for arping, scanning, arp cache poisoning, dns spoofing, etc. (they are present in the <a href="../conf/scapy_lsm2003.pdf">scapy presentation slides</a>)
<p>
<a name="bugs"><h2>Bugs</h2></a>
<ul>
<li>Link layer not well managed yet
<li>Does not give the right source IP for routes that use interface aliases (/proc/net/route reports only master interface)
<li>May miss packets under heavy load
</ul>
<a name="todolist"><h2>Todo list</h2></a>
Any suggestions are welcome.
<ul>
<li> add more self documentation
<li> have IP class inherit special IP methods for information gathering (whois, traceroute, scan, revDNS, netcraft, ... )
<li> nmap and xprobe os fingerprinting
<li> high level functions like scan(), traceroute(), tcpdump(), etherleak()...
<li> do reports in LaTeX, html, ...
<li> stealth mode to prevent unwanted packet emissions (DNS, ARP, ...)
<li> magic recognition mode to match ICMP error answers with modified citation against original packet
(see <a href="http://www.netfilter.org/security/2002-04-02-icmp-dnat.html">this</a>)
<li> better link layer support
<li> use a cache for routing informations, or use netlink routing messages
<li> detection of machines in promisc mode
<li> IPv6 support
<li> more protocols (bootp, dhcp, ntp, bgp, ospf, vrrp, igmp, cdp,...)
<li> lots of optimisations
<li> portability. Use libpcap/libdnet instead of PF_PACKET. (almost done)
<li> ...
</ul>
</body>
</html>
|