File: node-util.scm

package info (click to toggle)
scheme48 1.8%2Bdfsg-1%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 14,984 kB
file content (730 lines) | stat: -rw-r--r-- 22,896 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
 
; Copyright (c) 1993-2008 by Richard Kelsey.  See file COPYING.

; This file contains miscellaneous utilities for accessing and modifying the
; node tree.

; Get the root of the tree containing node.

(define (node-base node)
  (do ((p node (node-parent p)))
      ((not (node? (node-parent p)))
       p)))

; Find the procedure node that contains NODE.  Go up one parent at a time
; until a lambda node is found, then go up two at a time, skipping the
; intervening call nodes.

(define (containing-procedure node)
  (do ((node (node-parent node) (node-parent node)))
      ((lambda-node? node)
       (do ((node node (node-parent (node-parent node))))
	   ((proc-lambda? node) node)))))

; Trivial calls are those whose parents are call nodes.

(define (trivial? call)
  (call-node? (node-parent call)))

(define (nontrivial? call)
  (lambda-node? (node-parent call)))

(define (nontrivial-ancestor call)
  (let loop ((call call))
    (if (or (not (node? (node-parent call)))
	    (nontrivial? call))
	call
	(loop (node-parent call)))))

(define (calls-this-primop? call id)
  (eq? id (primop-id (call-primop call))))

; Return the variable to which a value is bound by LET or LETREC.

(define (bound-to-variable node)
  (let ((parent (node-parent node)))
    (case (primop-id (call-primop parent))
      ((let)
       (if (n= 0 (node-index node))
	   (list-ref (lambda-variables (call-arg parent 0))
		     (- (node-index node) 1))
	   #f))
      ((letrec2)
       (if (< 1 (node-index node))
	   (list-ref (lambda-variables
		      (variable-binder
		       (reference-variable (call-arg parent 1))))
		     (- (node-index node) 1))
	   #f))
      (else #f))))

; Return a list of all the reference to lambda-node L's value that call it.
; If not all can be identified then #F is returned.

(define (find-calls l)
  (let ((refs (cond ((bound-to-variable l)
		     => variable-refs)
		    ((called-node? l)
		     (list l))
		    (else
		     #f))))
    (cond ((and refs (every? called-node? refs))
	   refs)
	  ((calls-known? l)
	   (bug "cannot find calls for known lambda ~S" l))
	  (else #f))))

; Walk (or map) a tree-modifying procedure down a variable's references.

(define (walk-refs-safely proc var)
  (for-each proc (copy-list (variable-refs var))))

; Return #t if the total primop-cost of NODE is less than SIZE.

(define (small-node? node size)
  (let label ((call (lambda-body node)))
    (set! size (- size (primop-cost call)))
    (if (>= size 0)
	(walk-vector (lambda (n)
		       (cond ((lambda-node? n)
			      (label (lambda-body n)))
			     ((call-node? n)
			      (label n))))
		     (call-args call))))
  (>= size 0))

; True if executing NODE involves side-effects.

(define (side-effects? node . permissible)
  (let ((permissible (cons #f permissible)))
    (let label ((node node))
      (cond ((not (call-node? node))
	     #f)
	    ((and (= 0 (call-exits node))
		  (memq (primop-side-effects (call-primop node))
			permissible))
	     (let loop ((i (- (call-arg-count node) 1)))
	       (cond ((< i 0) #f)
		     ((label (call-arg node i)) #t)
		     (else (loop (- i 1))))))
	    (else
	     #t)))))

; A conservative check - is there only one SET-CONTENTS call for the owner and
; are all calls between CALL and the LETREC call that binds the owner calls to
; SET-CONTENTS?

;(define (single-letrec-set? call)
;  (let ((owner (call-arg call set/owner)))
;    (and (reference-node? owner)
;	 (every? (lambda (ref)
;		   (or (eq? (node-parent ref) call)
;		       (not (set-reference? ref))))
;		 (variable-refs (reference-variable owner))))))
    
;(define (set-reference? node)
;  (and (eq? 'set-contents
;	    (primop-id (call-primop (node-parent node))))
;       (= (node-index node) set/owner)))

;-------------------------------------------------------------------------------

(define the-undefined-value (list '*undefined-value*))

(define (undefined-value? x)
  (eq? x the-undefined-value))

(define (undefined-value-node? x)
  (and (literal-node? x)
       (undefined-value? (literal-value x))))

(define (make-undefined-literal)
  (make-literal-node the-undefined-value #f))

;-------------------------------------------------------------------------------
; Finding the lambda node called by CALL, JUMP, or RETURN

(define (called-node? node)
  (and (node? (node-parent node))
       (eq? node (called-node (node-parent node)))))
						   
(define (called-node call)
  (cond ((and (primop-procedure? (call-primop call))
	      (primop-call-index (call-primop call)))
	 => (lambda (i)
	      (call-arg call i)))
	(else '#f)))

(define (called-lambda call)
  (get-lambda-value (call-arg call (primop-call-index (call-primop call)))))

(define (get-lambda-value value)
  (cond ((lambda-node? value)
	 value)
	((reference-node? value)
	 (get-variable-lambda (reference-variable value)))
	(else
	 (error "peculiar procedure in ~S" value))))

(define (get-variable-lambda variable)
  (if (global-variable? variable)
      (or (variable-known-lambda variable)
	  (error "peculiar procedure variable ~S" variable))
      (let* ((binder (variable-binder variable))
	     (index (node-index binder))
	     (call (node-parent binder))
	     (lose (lambda ()
		     (error "peculiar procedure variable ~S" variable))))
	(case (primop-id (call-primop call))
	  ((let)
	   (if (= 0 index)
	       (get-lambda-value (call-arg call (+ 1 (variable-index variable))))
	       (lose)))
	  ((letrec1)
	   (if (= 0 index)
	       (get-letrec-variable-lambda variable)
	       (lose)))
	  ((call)
	   (if (and (= 1 index)
		    (= 0 (variable-index variable))) ; var is a continuation var
	       (get-lambda-value (call-arg call 0))
	       (lose)))
	  (else
	   (lose))))))

; Some of the checking can be removed once I know the LETREC code works.

(define (get-letrec-variable-lambda variable)
  (let* ((binder (variable-binder variable))
	 (call (lambda-body binder)))
    (if (and (eq? 'letrec2 (primop-id (call-primop call)))
	     (reference-node? (call-arg call 1))
	     (eq? (car (lambda-variables binder))
		  (reference-variable (call-arg call 1))))
	(call-arg call (+ 1 (variable-index variable)))
	(error "LETREC is incorrectly organized ~S" (node-parent binder)))))

;(define (get-cell-variable-lambda variable)
;  (let ((ref (first set-reference? (variable-refs variable))))
;    (if (and ref
;	     (eq? 'letrec
;		  (literal-value (call-arg (node-parent ref) set/type))))
;	(get-lambda-value (call-arg (node-parent ref) set/value))
;	(error "peculiar lambda cell ~S" variable))))
  
;-------------------------------------------------------------------------------
; Attaching and detaching arguments to calls

; Make ARGS the arguments of call node PARENT.  ARGS may contain #f.

(define (attach-call-args parent args)
  (let ((len (call-arg-count parent)))
    (let loop ((args args) (i 0))
      (cond ((null? args)
             (if (< i (- len 1))
                 (bug '"too few arguments added to node ~S" parent))
             (values))
            ((>= i len)
             (bug '"too many arguments added to node ~S" parent))
            (else
	     (if (car args)
		 (attach parent i (car args)))
	     (loop (cdr args) (+ 1 i)))))))

; Remove all of the arguments of NODE.

(define (remove-call-args node)
  (let ((len (call-arg-count node)))
    (do ((i 1 (+ i 1)))
        ((>= i len))
      (if (not (empty? (call-arg node i)))
          (erase (detach (call-arg node i)))))
    (values)))

; Replace the arguments of call node NODE with NEW-ARGS.

(define (replace-call-args node new-args)
  (let ((len (length new-args)))
    (remove-call-args node)
    (if (n= len (call-arg-count node))
        (let ((new (make-vector len empty))
              (old (call-args node)))
          (set-call-args! node new)))
    (attach-call-args node new-args)))

; Remove all arguments to CALL that are EMPTY?.  COUNT is the number of
; non-EMPTY? arguments.

(define (remove-null-arguments call count)
  (let ((old (call-args call))
        (new (make-vector count empty)))
    (let loop ((i 0) (j 0))
      (cond ((>= j count)
	     (values))
            ((not (empty? (vector-ref old i)))
             (set-node-index! (vector-ref old i) j)
             (vector-set! new j (vector-ref old i))
             (loop (+ i 1) (+ j 1)))
            (else
             (loop (+ i 1) j))))
    (set-call-args! call new)
    (values)))

; Remove all but the first COUNT arguments from CALL.

(define (shorten-call-args call count)
  (let ((old (call-args call))
        (new (make-vector count empty)))
    (vector-replace new old count)
    (do ((i (+ count 1) (+ i 1)))
        ((>= i (vector-length old)))
      (erase (vector-ref old i)))
    (set-call-args! call new)
    (values)))

; Insert ARG as the INDEXth argument to CALL.

(define (insert-call-arg call index arg)
  (let* ((old (call-args call))
         (len (vector-length old))
         (new (make-vector (+ 1 len) empty)))
    (vector-replace new old index)
    (do ((i index (+ i 1)))
        ((>= i len))
      (vector-set! new (+ i 1) (vector-ref old i))
      (set-node-index! (vector-ref old i) (+ i 1)))
    (set-call-args! call new)
    (attach call index arg)
    (values)))

; Remove the INDEXth argument to CALL.

(define (remove-call-arg call index)
  (let* ((old (call-args call))
         (len (- (vector-length old) 1))
         (new (make-vector len)))
    (vector-replace new old index)
    (if (node? (vector-ref old index))
        (erase (detach (vector-ref old index))))
    (do ((i index (+ i 1)))
        ((>= i len))
      (vector-set! new i (vector-ref old (+ i 1)))
      (set-node-index! (vector-ref new i) i))
    (set-call-args! call new)
    (if (< index (call-exits call))
        (set-call-exits! call (- (call-exits call) 1)))
    (values)))

; Add ARG to the end of CALL's arguments.

(define (append-call-arg call arg)
  (insert-call-arg call (call-arg-count call) arg)) 

; Replace CALL with the body of its continuation.

(define (remove-body call)
  (if (n= 1 (call-exits call))
      (bug "removing a call with ~D exits" (call-exits call))
      (replace-body call (detach-body (lambda-body (call-arg call 0))))))

; Avoiding N-Ary Procedures
; These are used in the expansion of the LET-NODES macro.

(define (attach-two-call-args node a0 a1)
  (attach node 0 a0)
  (attach node 1 a1))

(define (attach-three-call-args node a0 a1 a2)
  (attach node 0 a0)
  (attach node 1 a1)
  (attach node 2 a2))

(define (attach-four-call-args node a0 a1 a2 a3)
  (attach node 0 a0)
  (attach node 1 a1)
  (attach node 2 a2)
  (attach node 3 a3))

(define (attach-five-call-args node a0 a1 a2 a3 a4)
  (attach node 0 a0)
  (attach node 1 a1)
  (attach node 2 a2)
  (attach node 3 a3)
  (attach node 4 a4))

;-------------------------------------------------------------------------------
; Bind VARS to VALUES using letrec at CALL.  If CALL is already a letrec
; call, just add to it, otherwise make a new one.

(define (put-in-letrec vars values call)
  (cond ((eq? 'letrec2 (primop-id (call-primop call)))
	 (let ((binder (node-parent call)))
	   (mark-changed call)
	   (for-each (lambda (var)
		       (set-variable-binder! var binder))
		     vars)
	   (set-lambda-variables! binder
				  (append (lambda-variables binder) vars))
	   (for-each (lambda (value)
		       (append-call-arg call value))
		     values)))
	(else
	 (move-body
	  call
	  (lambda (call)
	    (receive (letrec-call letrec-cont)
		(make-letrec vars values)
	      (attach-body letrec-cont call)
	      letrec-call))))))

(define (make-letrec vars vals)
  (let ((cont (make-lambda-node 'c 'cont '())))
    (let-nodes ((call (letrec1 1 l2))
		(l2 ((x #f) . vars) (letrec2 1 cont (* x) . vals)))
      (values call cont))))

;-------------------------------------------------------------------------------
; Changing lambda-nodes' variable lists

(define (remove-lambda-variable l-node index)
  (remove-variable l-node (list-ref (lambda-variables l-node) index)))

(define (remove-variable l-node var)
  (if (used? var)
      (bug '"cannot remove referenced variable ~s" var))
  (erase-variable var)
  (let ((vars (lambda-variables l-node)))
    (if (eq? (car vars) var)
        (set-lambda-variables! l-node (cdr vars))
        (do ((vars vars (cdr vars)))
            ((eq? (cadr vars) var)
             (set-cdr! vars (cddr vars)))))))

; Remove all of L-NODES' unused variables.

(define (remove-unused-variables l-node)
  (set-lambda-variables! l-node
			 (filter! (lambda (v)
				    (cond ((used? v)
					   #t)
					  (else
					   (erase-variable v)
					   #f)))
				  (lambda-variables l-node))))

;------------------------------------------------------------------------------
; Substituting Values For Variables

; Substitute VAL for VAR.  If DETACH? is true then VAL should be detached
; and so can be used instead of a copy for the first substitution.
;
; If VAL is a reference to a variable named V, it was probably introduced by
; the CPS conversion code.  In that case, the variable is renamed with the
; name of VAR.  This helps considerably when debugging the compiler.

(define (substitute var val detach?)
  (if (and (reference-node? val)
           (eq? 'v (variable-name (reference-variable val)))
	   (not (global-variable? (reference-variable val))))
      (set-variable-name! (reference-variable val)
           (variable-name var)))
  (let ((refs (variable-refs var)))
    (set-variable-refs! var '())
    (cond ((not (null? refs))
           (for-each (lambda (ref)
		       (replace ref (copy-node-tree val)))
		     (if detach? (cdr refs) refs))
           (if detach? (replace (car refs) (detach val))))
          (detach?
           (erase (detach val))))))

; Walk the tree NODE replacing references to variables in OLD-VARS with
; the corresponding variables in NEW-VARS.  Uses VARIABLE-FLAG to mark
; the variables being replaced.

(define (substitute-vars-in-node-tree node old-vars new-vars)
  (for-each (lambda (old new)
	      (set-variable-flag! old new))
	    old-vars
	    new-vars)
  (let tree-walk ((node node))
    (cond ((lambda-node? node)
           (walk-vector tree-walk (call-args (lambda-body node))))
          ((call-node? node)
           (walk-vector tree-walk (call-args node)))
          ((and (reference-node? node)
                (variable-flag (reference-variable node)))
           => (lambda (new)
                (replace node (make-reference-node new))))))
  (for-each (lambda (old) 
	      (set-variable-flag! old #f))
	    old-vars))

; Replaces the call node CALL with VALUE.
; (<proc> <exit> . <args>) => (<exit> <value>)

(define (replace-call-with-value call value)
  (cond ((n= 1 (call-exits call))
         (bug '"can only substitute for call with one exit ~s" call))
        (else
	 (let ((cont (detach (call-arg call 0))))
	   (set-call-exits! call 0)
	   (replace-call-args call (if value (list cont value) (list cont)))
	   (set-call-primop! call (get-primop (enum primop let)))))))

;------------------------------------------------------------------------------
; Copying Node Trees

; Copy the node-tree NODE.  This dispatches on the type of NODE.
; Variables which have been copied have the copy in the node-flag field.

(define (copy-node-tree node)
  (let ((new (cond ((lambda-node? node)
		    (copy-lambda node))
		   ((reference-node? node)
		    (let ((var (reference-variable node)))
		      (cond ((and (variable-binder var)
				  (variable-flag var))
			     => make-reference-node)
			    (else
			     (make-reference-node var)))))
		   ((call-node? node)
		    (copy-call node))
		   ((literal-node? node)
		    (copy-literal-node node)))))
    new))

; Copy a lambda node and its variables.  The variables' copies are put in
; their VARIABLE-FLAG while the lambda's body is being copied.

(define (copy-lambda node)
  (let* ((vars (map (lambda (var)
		      (if var
			  (let ((new (copy-variable var)))
			    (set-variable-flag! var new)
			    new)
			  #f))
		    (lambda-variables node)))
         (new-node (make-lambda-node (lambda-name node)
				     (lambda-type node)
				     vars)))
    (attach-body new-node (copy-call (lambda-body node)))
    (set-lambda-protocol! new-node (lambda-protocol node))
    (set-lambda-source! new-node (lambda-source node))
    (for-each (lambda (var)
		(if var (set-variable-flag! var #f)))
	      (lambda-variables node))
    new-node))

(define (copy-call node)
  (let ((new-node (make-call-node (call-primop node)
				  (call-arg-count node)
				  (call-exits node))))
    (do ((i 0 (+ i 1)))
        ((>= i (call-arg-count node)))
      (attach new-node i (copy-node-tree (call-arg node i))))
    (set-call-source! new-node (call-source node))
    new-node))

;------------------------------------------------------------------------------
; Checking the scoping of identifers

; Mark all ancestors of N with FLAG

(define (mark-ancestors n flag)
  (do ((n n (node-parent n)))
      ((not (node? n)) (values))
    (set-node-flag! n flag)))

; Does N have an ancestor with a non-#f flag?

(define (marked-ancestor? n)
  (do ((n n (node-parent n)))
      ((or (not (node? n))
           (node-flag n))
       (node? n))))

; Does N have an ancestor with a #f flag?

(define (unmarked-ancestor? n)
  (do ((n n (node-parent n)))
      ((or (not (node? n))
           (not (node-flag n)))
       (node? n))))

; Is ANC? an ancestor of NODE?

(define (node-ancestor? anc? node)
  (set-node-flag! anc? #t)
  (let ((okay? (marked-ancestor? node)))
    (set-node-flag! anc? #f)
    okay?))

; Find the lowest ancestor of N that has a non-#f flag

(define (marked-ancestor n)
  (do ((n n (node-parent n)))
      ((or (not (node? n))
           (node-flag n))
       (if (node? n) n #f))))

; Mark the ancestors of START with #f, stopping when END is reached

(define (unmark-ancestors-to start end)
  (do ((node start (node-parent node)))
      ((eq? node end))
    (set-node-flag! node #f)))

; Return the lowest node that is above all NODES

(define (least-common-ancestor nodes)
  (mark-ancestors (car nodes) #t)
  (let loop ((nodes (cdr nodes)) (top (car nodes)))
    (cond ((null? nodes)
           (mark-ancestors top #f)
           top)
          (else
           (let ((new (marked-ancestor (car nodes))))
             (unmark-ancestors-to top new)
             (loop (cdr nodes) new))))))

; Can TO be moved to FROM without taking variables out of scope.
; This first marks all of the ancestors of FROM, and then unmarks all of the
; ancestors of TO.  The net result is to mark every node that is above FROM but
; not above TO.  Then if any reference-node below FROM references a variable
; with a marked binder, that node, and thus FROM itself, cannot legally be
; moved to TO.

; This is not currently used anywhere, and it doesn't know about trivial
; calls.

(define (hoistable-node? from to)
  (let ((from (if (call-node? from)
		  (node-parent (nontrivial-ancestor from))
		  from)))
    (mark-ancestors (node-parent from) #t)
    (mark-ancestors to #f)
    (let ((okay? (let label ((n from))
                   (cond ((lambda-node? n)
                          (let* ((vec (call-args (lambda-body n)))
                                 (c (vector-length vec)))
                            (let loop ((i 0))
                              (cond ((>= i c) #t)
                                    ((label (vector-ref vec i))
                                     (loop (+ i 1)))
                                    (else #f)))))
                         ((reference-node? n)
                          (let ((b (variable-binder (reference-variable n))))
                            (or (not b) (not (node-flag b)))))
                         (else #t)))))
      (mark-ancestors (node-parent from) #f)
      okay?)))

; Mark all of the lambda nodes which bind variables referenced below NODE.

(define (mark-binders node)
  (let label ((n node))
    (cond ((lambda-node? n)
           (walk-vector label (call-args (lambda-body n))))
          ((reference-node? n)
           (let ((b (variable-binder (reference-variable n))))
             (if b (set-node-flag! b #f))))))
  (values))


;------------------------------------------------------------------------------
; For each lambda-node L this sets (PARENT L) to be the enclosing PROC node
; of L and, if L is a PROC node, sets (KIDS L) to be the lambda nodes it
; encloses.

(define (find-scoping lambdas parent set-parent! kids set-kids!)
  (receive (procs others)
      (partition-list proc-lambda? lambdas)
    (for-each (lambda (l)
		(set-parent! l #f)
		(set-kids!   l '()))
	      procs)
    (for-each (lambda (l)
		(set-parent! l #f))
	      others)
    (letrec ((set-lambda-parent!
	      (lambda (l)
		(cond ((parent l)
		       => identity)
		      ((proc-ancestor l)
		       => (lambda (p)
			    (let ((p (if (proc-lambda? p)
					 p
					 (set-lambda-parent! p))))
			      (set-kids! p (cons l (kids p)))
			      (set-parent! l p)
			      p)))
		      (else #f)))))
      (for-each set-lambda-parent! lambdas))
    (values procs others)))

(define (proc-ancestor node)
  (let ((p (node-parent node)))
    (if (not (node? p))
        #f
        (let ((node (do ((p p (node-parent p)))
			((lambda-node? p)
			 p))))
          (do ((node node (node-parent (node-parent node))))
              ((proc-lambda? node)
	       node))))))

(define (no-free-references? node)
  (if (call-node? node)
      (error "NO-FREE-REFERENCES only works on value nodes: ~S" node))
  (let label ((node node))
    (cond ((reference-node? node)
	   (let ((b (variable-binder (reference-variable node))))
	     (or (not b)
		 (node-flag b))))
	  ((lambda-node? node)
	   (set-node-flag! node #t)
	   (let ((res (label (lambda-body node))))
	     (set-node-flag! node #f)
	     res))
	  ((call-node? node)
	   (let ((vec (call-args node)))
	     (let loop ((i (- (vector-length vec) 1)))
	       (cond ((< i 0) #t)
		     ((not (label (vector-ref vec i))) #f)
		     (else (loop (- i 1)))))))
	  (else #t))))

(define (node-type node)
  (cond ((literal-node? node)
	 (literal-type node))
	((reference-node? node)
	 (variable-type (reference-variable node)))
	((lambda-node? node)
	 (lambda-node-type node))
	((and (call-node? node)
	      (primop-trivial? (call-primop node)))
	 (trivial-call-return-type node))
	(else
	 (error "node ~S does not represent a value" node))))

;----------------------------------------------------------------
; Debugging utilities

(define (show-simplified node)
  (let loop ((n node) (r '()))
    (if (node? n)
	(loop (node-parent n) (cons (node-simplified? n) r))
	(reverse r))))

(define (show-flag node)
  (let loop ((n node) (r '()))
    (if (node? n)
        (loop (node-parent n) (cons (node-flag n) r))
	(reverse r))))

(define (reset-simplified node)
  (let loop ((n node))
    (cond ((node? n)
	   (set-node-simplified?! n #f)
	   (loop (node-parent n))))))