1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
; Copyright (c) 1993-2008 by Richard Kelsey. See file COPYING.
; This file contains the definitions of the node tree data structure.
;---------------------------------------------------------------------------
; Records to represent variables.
(define-record-type variable
((name) ; Source code name for variable (used for debugging only)
(id) ; Unique numeric identifier (used for debugging only)
(type) ; Type for variable's value
)
(binder ; LAMBDA node which binds this variable
(refs '()) ; List of leaf nodes n for which (REFERENCE-VARIABLE n) = var.
(flag #f) ; Useful slot, used by shapes, COPY-NODE, NODE->VECTOR, etc.
; all users must leave this is #F
(flags '()) ; For various annotations, e.g. IGNORABLE
(generate #f) ; For whatever code generation wants
))
(define-record-discloser type/variable
(lambda (var)
(node-hash var)
(list 'variable (variable-name var) (variable-id var))))
(define (make-variable name type)
(variable-maker name (new-id) type))
(define (make-global-variable name type)
(let ((var (make-variable name type)))
(set-variable-binder! var #f)
var))
(define (global-variable? var)
(not (variable-binder var)))
; Every variable has a unique numeric identifier that is used for printing.
(define *variable-id* 0)
(define (new-id)
(let ((id *variable-id*))
(set! *variable-id* (+ 1 *variable-id*))
id))
(define (erase-variable var)
(cond ((eq? (variable-id var) '<erased>)
(bug "variable ~S already erased" var))
(else
(set-variable-id! var '<erased>))))
(define *node-hash-table* #f)
(define (reset-node-id)
(set! *variable-id* 0)
(set! *node-hash-table* (make-table)))
(define (node-hash var-or-lambda)
(let ((id (if (variable? var-or-lambda)
(variable-id var-or-lambda)
(lambda-id var-or-lambda))))
(table-set! *node-hash-table* id var-or-lambda)))
(define (node-unhash n)
(table-ref *node-hash-table* n))
; The index of VAR in the variables bound by its binder.
(define (variable-index var)
(let ((binder (variable-binder var)))
(if (not binder)
(bug "VARIABLE-INDEX called on global variable ~S" var)
(do ((i 0 (+ i 1))
(vs (lambda-variables binder) (cdr vs)))
((eq? (car vs) var)
i)))))
; Copy an old variable.
(define (copy-variable old)
(let ((var (make-variable (variable-name old) (variable-type old))))
(set-variable-flags! var (variable-flags old))
var))
; An unused variable is either #F or a variable with no references.
(define (used? var)
(and var
(not (null? (variable-refs var)))))
(define (unused? var)
(not (used? var)))
; known values for top-level variables
(define (flag-accessor flag)
(lambda (var)
(let ((p (flag-assq flag (variable-flags var))))
(if p (cdr p) #f))))
(define (flag-setter flag)
(lambda (var value)
(set-variable-flags! var
(cons (cons flag value)
(variable-flags var)))))
(define (flag-remover flag)
(lambda (var)
(set-variable-flags! var (filter (lambda (x)
(or (not (pair? x))
(not (eq? (car x) flag))))
(variable-flags var)))))
(define variable-known-value (flag-accessor 'known-value))
(define add-variable-known-value! (flag-setter 'known-value))
(define remove-variable-known-value! (flag-remover 'known-value))
(define variable-simplifier (flag-accessor 'simplifier))
(define add-variable-simplifier! (flag-setter 'simplifier))
(define remove-variable-simplifier! (flag-remover 'simplifier))
(define variable-known-lambda (flag-accessor 'known-lambda))
(define note-known-global-lambda! (flag-setter 'known-lambda))
;----------------------------------------------------------------------------
; The main record for the node tree
(define-record-type node
((variant) ; One of LAMBDA, CALL, REFERENCE, LITERAL
)
((parent empty) ; Parent node
(index '<free>) ; Index of this node in parent
(simplified? #f) ; True if it has already been simplified.
(flag #f) ; Useful flag, all users must leave this is #F
stuff-0 ; Variant components - each type of node has a different
stuff-1 ; use for these fields
stuff-2
stuff-3
))
(define-record-discloser type/node
(lambda (node)
`(node ,(node-variant node)
. ,(case (node-variant node)
((lambda)
(node-hash node)
(list (lambda-name node) (lambda-id node)))
((call)
(list (primop-id (call-primop node))))
((reference)
(let ((var (reference-variable node)))
(list (variable-name var) (variable-id var))))
((literal)
(list (literal-value node)))
(else
'())))))
(define make-node node-maker)
;--------------------------------------------------------------------------
; EMPTY is used to mark empty parent and child slots in nodes.
(define empty
(list 'empty))
(define (empty? obj) (eq? obj empty))
(define (proclaim-empty probe)
(cond ((not (empty? probe))
(bug "not empty - ~S" probe))))
;----------------------------------------------------------------------------
; This walks the tree rooted at NODE and removes all pointers that point into
; this tree from outside.
(define (erase node)
(let label ((node node))
(cond ((empty? node)
#f)
(else
(case (node-variant node)
((lambda)
(label (lambda-body node)))
((call)
(walk-vector label (call-args node))))
(really-erase node)))))
; This does the following:
; Checks that this node has not already been removed from the tree.
;
; Reference nodes are removed from the refs list of the variable they reference.
;
; For lambda nodes, the variables are erased, non-CONT lambdas are removed from
; the *LAMBDAS* list (CONT lambdas are never on the list).
;
; Literal nodes whose values have reference lists are removed from those
; reference lists.
(define (really-erase node)
(cond ((empty? node)
#f)
(else
(cond ((eq? (node-index node) '<erased>)
(bug "node erased twice ~S" node))
((reference-node? node)
(let ((var (reference-variable node)))
(set-variable-refs! var
(delq! node (variable-refs var)))))
((lambda-node? node)
(for-each (lambda (v)
(if v (erase-variable v)))
(lambda-variables node))
(if (neq? (lambda-type node) 'cont)
(delete-lambda node))
(set-lambda-variables! node '())) ; safety
((literal-node? node)
(let ((refs (literal-refs node)))
(if refs
(set-literal-reference-list!
refs
(delq! node (literal-reference-list refs)))))))
; (erase-type (node-type node))
(set-node-index! node '<erased>))))
;---------------------------------------------------------------------------
; CONNECTING AND DISCONNECTING NODES
;
; There are two versions of each of these routines, one for value nodes
; (LAMBDA, REFERENCE, or LITERAL), and one for call nodes.
; Detach a node from the tree.
(define (detach node)
(vector-set! (call-args (node-parent node))
(node-index node)
empty)
(set-node-index! node #f)
(set-node-parent! node empty)
node)
(define (detach-body node)
(set-lambda-body! (node-parent node) empty)
(set-node-index! node #f)
(set-node-parent! node empty)
node)
; Attach a node to the tree.
(define (attach parent index child)
(proclaim-empty (node-parent child))
(proclaim-empty (vector-ref (call-args parent) index))
(vector-set! (call-args parent) index child)
(set-node-parent! child parent)
(set-node-index! child index)
(values))
(define (attach-body parent call)
(proclaim-empty (node-parent call))
(proclaim-empty (lambda-body parent))
(set-lambda-body! parent call)
(set-node-parent! call parent)
(set-node-index! call '-1)
(values))
; NODES is an alternating series ... lambda, call, lambda, call, ...
; that is connected into a sequence. Each call becomes the body of the
; previous lambda and each lambda becomes the (single) exit of the previous
; call.
(define (connect-sequence . all-nodes)
(if (not (null? all-nodes))
(let loop ((last (car all-nodes)) (nodes (cdr all-nodes)))
(if (not (null? nodes))
(let ((next (car nodes)))
(cond ((and (lambda-node? last)
(call-node? next))
(attach-body last next))
((and (call-node? last)
(lambda-node? next)
(= 1 (call-exits last)))
(attach last 0 next))
(else
(bug "bad node sequence ~S" all-nodes)))
(loop next (cdr nodes)))))))
; Replace node in tree with value of applying proc to node.
; Note the fact that a change has been made at this point in the tree.
(define (move node proc)
(let ((parent (node-parent node))
(index (node-index node)))
(detach node)
(let ((new (proc node)))
(attach parent index new)
(mark-changed new))))
(define (move-body node proc)
(let ((parent (node-parent node)))
(detach-body node)
(let ((new (proc node)))
(attach-body parent new)
(mark-changed new))))
; Put CALL into the tree as the body of lambda-node PARENT, making the current
; body of PARENT the body of lambda-node CONT.
(define (insert-body call cont parent)
(move-body (lambda-body parent)
(lambda (old-call)
(attach-body cont old-call)
call)))
; Replace old-node with new-node, noting that a change has been made at this
; point in the tree.
(define (replace old-node new-node)
(let ((index (node-index old-node))
(parent (node-parent old-node)))
(mark-changed old-node)
(erase (detach old-node))
(attach parent index new-node)
(set-node-simplified?! new-node #f)
(values)))
(define (replace-body old-node new-node)
(let ((parent (node-parent old-node)))
(mark-changed old-node)
(erase (detach-body old-node))
(attach-body parent new-node)
(set-node-simplified?! new-node #f)
(values)))
; Starting with the parent of NODE, set the SIMPLIFIED? flags of the
; ancestors of NODE to be #F.
(define (mark-changed node)
(do ((p (node-parent node) (node-parent p)))
((or (empty? p)
(not (node-simplified? p))))
(set-node-simplified?! p #f)))
;-------------------------------------------------------------------------
; Syntax for defining the different types of nodes.
(define-syntax define-node-type
(lambda (form rename compare)
(let ((id (cadr form))
(slots (cddr form)))
(let ((pred (concatenate-symbol id '- 'node?)))
`(begin (define (,pred x)
(eq? ',id (node-variant x)))
. ,(do ((i 0 (+ i 1))
(s slots (cdr s))
(r '() (let ((n (concatenate-symbol id '- (car s)))
(f (concatenate-symbol 'node-stuff- i)))
`((define-node-field ,n ,pred ,f)
. ,r))))
((null? s) (reverse r))))))))
; These are used to rename the NODE-STUFF fields of particular node variants.
(define-syntax define-node-field
(lambda (form rename compare)
(let ((id (cadr form))
(predicate (caddr form))
(field (cadddr form)))
`(begin
(define (,id node)
(,field (enforce ,predicate node)))
(define (,(concatenate-symbol 'set- id '!) node val)
(,(concatenate-symbol 'set- field '!)
(enforce ,predicate node)
val))))))
;-------------------------------------------------------------------------
; literals
(define-node-type literal
value ; the value
type ; the type of the value
refs ; either #F or a literal-reference record; only a few types of literal
) ; literal values require reference lists
(define-record-type literal-reference
()
((list '()) ; list of literal nodes that refer to a particular value
))
(define make-literal-reference-list literal-reference-maker)
(define (make-literal-node value type)
(let ((node (make-node 'literal)))
(set-literal-value! node value)
(set-literal-type! node type)
(set-literal-refs! node #f)
node))
(define (copy-literal-node node)
(let ((new (make-node 'literal))
(refs (literal-refs node)))
(set-literal-value! new (literal-value node))
(set-literal-type! new (literal-type node))
(set-literal-refs! new refs)
(if refs (set-literal-reference-list!
refs
(cons new (literal-reference-list refs))))
new))
(define (make-marked-literal value refs)
(let ((node (make-node 'literal)))
(set-literal-value! node value)
(set-literal-refs! node refs)
(set-literal-reference-list! refs
(cons node (literal-reference-list refs)))
node))
;-------------------------------------------------------------------------
; These just contain an identifier.
(define-node-type reference
variable
)
(define (make-reference-node variable)
(let ((node (make-node 'reference)))
(set-reference-variable! node variable)
(set-variable-refs! variable (cons node (variable-refs variable)))
node))
; Literal and reference nodes are leaf nodes as they do not contain any other
; nodes.
(define (leaf-node? n)
(or (literal-node? n)
(reference-node? n)))
;--------------------------------------------------------------------------
; Call nodes
(define-node-type call
primop ; the primitive being called
args ; vector of child nodes
exits ; the number of arguments that are continuations
source ; source info
)
; Create a call node with primop P, N children and EXITS exits.
(define (make-call-node primop n exits)
(let ((node (make-node 'call)))
(set-call-primop! node primop)
(set-call-args! node (make-vector n empty))
(set-call-exits! node exits)
(set-call-source! node #f)
node))
(define (call-arg call index)
(vector-ref (call-args call) index))
(define (call-arg-count call)
(vector-length (call-args call)))
;----------------------------------------------------------------------------
; LAMBDA NODES
(define-node-type lambda
body ; the call-node that is the body of the lambda
variables ; a list of variable records with #Fs for ignored positions
source ; source code for the lambda (if any)
data ; a LAMBDA-DATA record (lambdas have more associated data than
) ; the other node types.)
(define-subrecord lambda lambda-data lambda-data
((name) ; symbol (for debugging only)
id ; unique integer (for debugging only)
(type)) ; PROC, KNOWN-PROC, CONT, or JUMP (maybe ESCAPE at some point)
((block #f) ; either a basic-block (for flow analysis) or a code-block
; (for code generation).
(env #f) ; a record containing lexical environment data
(protocol #f) ; calling protocol from the source language
(prev #f) ; previous node on *LAMBDAS* list
(next #f) ; next node on *LAMBDAS* list
))
; Doubly linked list of all non-CONT lambdas
(define *lambdas* #f)
(define (initialize-lambdas)
(set! *lambdas* (make-lambda-node '*lambdas* 'cont '()))
(link-lambdas *lambdas* *lambdas*))
(define (link-lambdas node1 node2)
(set-lambda-prev! node2 node1)
(set-lambda-next! node1 node2))
(define (add-lambda node)
(let ((next (lambda-next *lambdas*)))
(link-lambdas *lambdas* node)
(link-lambdas node next)))
(define (delete-lambda node)
(link-lambdas (lambda-prev node) (lambda-next node))
(set-lambda-prev! node #f)
(set-lambda-next! node #f))
(define (walk-lambdas proc)
(do ((n (lambda-next *lambdas*) (lambda-next n)))
((eq? n *lambdas*))
(proc n))
(values))
(define (make-lambda-list)
(do ((n (lambda-next *lambdas*) (lambda-next n))
(l '() (cons n l)))
((eq? n *lambdas*)
l)))
(define (add-lambdas nodes)
(for-each add-lambda nodes))
; Create a lambda node. NAME is used as the name of the lambda node's
; self variable. VARS is a list of variables. The VARIABLE-BINDER slot
; of each variable is set to be the new lambda node.
(define (make-lambda-node name type vars)
(let ((node (make-node 'lambda))
(data (lambda-data-maker name (new-id) type)))
(set-lambda-body! node empty)
(set-lambda-variables! node vars)
(set-lambda-data! node data)
(set-lambda-source! node #f)
(for-each (lambda (var)
(if var (set-variable-binder! var node)))
vars)
(if (neq? type 'cont)
(add-lambda node))
node))
; Change the type of lambda-node NODE to be TYPE. This may require adding or
; deleting NODE from the list *LAMBDAS*.
(define (change-lambda-type node type)
(let ((has (lambda-type node)))
(cond ((neq? type (lambda-type node))
(set-lambda-type! node type)
(cond ((eq? type 'cont)
(delete-lambda node))
((eq? has 'cont)
(add-lambda node)))))
(values)))
(define (lambda-variable-count node)
(length (lambda-variables node)))
(define (calls-known? node)
(neq? (lambda-type node) 'proc))
(define (set-calls-known?! node)
(set-lambda-type! node 'known-proc))
(define (proc-lambda? node)
(or (eq? 'proc (lambda-type node))
(eq? 'known-proc (lambda-type node))))
|