File: dominators.scm

package info (click to toggle)
scheme48 1.8%2Bdfsg-1%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 14,984 kB
file content (273 lines) | stat: -rw-r--r-- 9,024 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
; Copyright (c) 1993-2008 by Richard Kelsey.  See file COPYING.

;;; Find immediate dominators in a directed graph
;;; Mark Reinhold (mbr@research.nj.nec.com)/3 February 1995
; Debugging code removed and everything reluctantly Scheme-ized by
; R. Kelsey, St. Valentine's Day, 1995

; This fast dominator code is based upon Lengauer and Tarjan, "A Fast
; Algorithm for Finding Dominators in a Flowgraph," ACM TOPLAS 1:1, pp.
; 121--141, July 1979.  It runs in time $O(|E|\log|V|)$, where $|E|$ is the
; number of edges and $|V|$ is the number of vertices.  A smaller time bound
; of $O(|E|\alpha(|E|,|V|))$, where $\alpha$ is the inverse of Ackerman's
; function, can be achieved with more complex versions of the internal link!
; and eval! procedures.
;
; The client provides a rooted, directed graph by passing a root node,
; successor and predecessor functions, and auxiliary procedures for accessing
; and setting a slot in each node.  The dominator code creates a shadow of
; the client's graph using the vertex record type defined below.  To keep
; things clear, the client's graph is considered to contain "nodes," while
; the shadow graph contains "vertices."

(define-record-type vertex :vertex
  (really-make-vertex node semi bucket ancestor debug)
  vertex?
  (node vertex-node)        ; Corresponding node in client's graph
  (semi vertex-semi         ; A number for this vertex, w, as follows:
	set-vertex-semi!)   ;   After w is numbered, but before its semidominator
			    ;      is computed: w's DFS number
		            ;   After w's semidominator is computed:
		            ;      the number of its semidominator
  (parent vertex-parent     ; Parent of this vertex in DFS spanning tree
	  set-vertex-parent!)
  (pred vertex-pred         ; Parents
	set-vertex-pred!)
  (label vertex-label       ; Label in spanning forest, initially this vertex
	 set-vertex-label!)
  (bucket vertex-bucket     ; List of vertices whose semidominator is this vertex
	  set-vertex-bucket!)
  (dom vertex-dom           ; A vertex, as follows:
       set-vertex-dom!)     ;   After step 3: If the semidominator of this
    		            ;      vertex, w, is its immediate dominator, then
		            ;      this slot contains that vertex; otherwise,
		            ;      this slot is a vertex v whose number is
		            ;      smaller than w's and whose immediate dominator
                            ;      is also w's immediate dominator
		            ;   After step 4: The immediate dominator of this
                            ;      vertex
  (ancestor vertex-ancestor ; An ancestor of this vertex in the spanning forest
	    set-vertex-ancestor!)
  (debug vertex-debug       ; Debug field ##
	 set-vertex-debug!))

(define (make-vertex node semi)
  (really-make-vertex node
		      semi
		      '()	; bucket
		      #f	; ancestor
		      #f))	; debug

(define (push-vertex-bucket! inf elt)
  (set-vertex-bucket! inf (cons elt (vertex-bucket inf))))


(define (find-dominators-quickly! root		; root node
				  succ		; maps a node to its children
				  pred		; maps a node to its parents
				  slot		; result slot accessor
				  set-slot!)	; result slot setter
  ;; Compute the dominator tree of the given rooted, directed graph;
  ;; when done, the slot of each node will contain its immediate dominator.
  ;; Requires that each slot initially contain #f.

  (define (dfs root)
    (let ((n 0) (vertices '()))
      (let go ((node root) (parent #f))
	(let ((v (make-vertex node n)))
	  (set-slot! node v)
	  (set! n (+ n 1))
	  (set-vertex-parent! v parent)
	  (set-vertex-label! v v)
	  (set! vertices (cons v vertices))
	  (for-each (lambda (node)
		      (if (not (slot node))
			  (go node v)))
		    (succ node))))
      
      (let ((vertex-map (list->vector (reverse! vertices))))
	(do ((i 0 (+ i 1)))
	    ((= i (vector-length vertex-map)))
	  (let ((v (vector-ref vertex-map i)))
	    (set-vertex-pred! v (map slot (pred (vertex-node v))))))
	(values n vertex-map))))

  (define (compress! v)
    (let ((a (vertex-ancestor v)))
      (if (vertex-ancestor a)
	  (begin
	    (compress! a)
	    (if (< (vertex-semi (vertex-label a))
		   (vertex-semi (vertex-label v)))
		(set-vertex-label! v (vertex-label a)))
	    (set-vertex-ancestor! v (vertex-ancestor (vertex-ancestor v)))))))
    
  (define (eval! v)
    (cond ((not (vertex-ancestor v))
	   v)
	  (else
	   (compress! v)
	   (vertex-label v))))
  
  (define (link! v w)
    (set-vertex-ancestor! w v))
  
  (receive (n vertex-map) (dfs root)	; Step 1
    (do ((i (- n 1) (- i 1)))
	((= i 0))
      (let ((w (vector-ref vertex-map i)))
	
	(for-each (lambda (v)		; Step 2
		    (let ((u (eval! v)))
		      (if (< (vertex-semi u)
			     (vertex-semi w))
			  (set-vertex-semi! w
					    (vertex-semi u)))))
		  (vertex-pred w))
	(push-vertex-bucket! (vector-ref vertex-map (vertex-semi w)) w)
	(link! (vertex-parent w) w)
	
	(for-each (lambda (v)		; Step 3
		    ;; T&L delete v from the bucket list at this point,
		    ;; but there is no reason to do so
		    (let ((u (eval! v)))
		      (set-vertex-dom! v
				       (if (< (vertex-semi u)
					      (vertex-semi v))
					   u
					   (vertex-parent w)))))
		  (vertex-bucket (vertex-parent w)))))
    
    (do ((i 1 (+ i 1)))			; Step 4
	((= i n))
      (let ((w (vector-ref vertex-map i)))
	(if (not (eq? (vertex-dom w)
		      (vector-ref vertex-map (vertex-semi w))))
	    (set-vertex-dom! w
			     (vertex-dom (vertex-dom w))))))
    (set-vertex-dom! (slot root) #f)
    
    ;(show-nodes root succ slot)	; ## debug
    
    (do ((i 0 (+ i 1)))			; Set dominator pointers
	((= i n))
      (let ((w (vector-ref vertex-map i)))
	(let ((d (vertex-dom w)))
	  (set-slot! (vertex-node w) (if d (vertex-node d) #f)))))))


;;; The fast dominator algorithm is difficult to prove correct, so the
;;; following slow code is provided in order to check its results.  The slow
;;; algorithm, which runs in time $O(|E||V|)$, is adapted from Aho and Ullman,
;;; _The Theory of Parsing, Translation, and Compiling_, Prentice-Hall, 1973,
;;; p. 916.


(define (find-dominators-slowly! root succ pred slot set-slot!)

  (define vertex-succ vertex-pred)
  (define set-vertex-succ! set-vertex-pred!)
  (define vertex-mark vertex-ancestor)
  (define set-vertex-mark! set-vertex-ancestor!)

  (define (dfs root)
    (let ((n 0) (vertices '()))
      (let go ((node root) (parent #f))
	(let ((v (make-vertex node n)))
	  (set-slot! node v)
	  (set! n (+ n 1))
	  (set! vertices (cons v vertices))
	  (set-vertex-parent! v #f)
	  (set-vertex-label! v #f)
	  (for-each (lambda (node)
		      (if (not (slot node))
			  (go node v)))
		    (succ node))))

      (for-each (lambda (v)
		  (set-vertex-succ! v (map slot (succ (vertex-node v)))))
		vertices)
      (values n (reverse! vertices))))

  (receive (n vertices) (dfs root)

    (define (inaccessible v)
      ;; Determine set of vertices that are inaccessible if vertex v is ignored
      (set-vertex-mark! v #t)
      (let go ((w (car vertices)))
	(set-vertex-mark! w #t)
	(for-each (lambda (u)
		    (if (not (vertex-mark u))
			(go u)))
		  (vertex-succ w)))
      (filter (lambda (w)
		(cond
		 ((vertex-mark w)
		  (set-vertex-mark! w #f)
		  #f)
		 (else #t)))
	      vertices))

    (for-each (lambda (v) (set-vertex-dom! v (car vertices)))
	      (cdr vertices))

    (for-each (lambda (v)
		(let ((dominated-by-v (inaccessible v)))
		  (for-each (lambda (w)
			      (if (eq? (vertex-dom w) (vertex-dom v))
				  (set-vertex-dom! w v)))
			    dominated-by-v)))
	      (cdr vertices))
    (set-vertex-dom! (car vertices) #f)

					;(show-nodes root succ slot)	; ## debug

    (for-each (lambda (v)
		(set-slot! (vertex-node v)
			   (let ((d (vertex-dom v)))
			     (if d (vertex-node d) #f))))
	      vertices)))


(define (time-thunk thunk) (thunk))

(define (find-and-check-dominators! root succ pred slot set-slot!)
  (let ((set-fast-slot! (lambda (x v) (set-car! (slot x) v)))
	(fast-slot (lambda (x) (car (slot x))))
	(set-slow-slot! (lambda (x v) (set-cdr! (slot x) v)))
	(slow-slot (lambda (x) (cdr (slot x)))))

    (let go ((node root))
      (set-slot! node (cons #f #f))
      (for-each (lambda (node)
		  (if (not (slot node))
		      (go node)))
		(succ node)))

    (let ((fast (time-thunk
		 (lambda ()
		   (find-dominators-quickly!
		    root succ pred fast-slot set-fast-slot!))))
	  (slow (time-thunk (lambda ()
			      (find-dominators-slowly!
			       root succ pred slow-slot set-slow-slot!)))))

					;     (format #t "** find-and-check-dominators!: fast ~a, slow ~a~%" fast slow)	; ##
      (let go ((node root))
	(if (not (eq? (fast-slot node) (slow-slot node)))
	    (bug "Dominator algorithm error"))
	(set-slot! node (fast-slot node))
	(for-each (lambda (node)
		    (if (pair? (slot node)) ; ## Assumes nodes are not pairs
			(go node)))
		  (succ node))))))


(define *check?* #t)

(define (find-dominators! . args)
  (apply (if *check?*
	     find-and-check-dominators!
	     find-dominators-quickly!)
	 args))