1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
; Copyright (c) 1993-2008 by Richard Kelsey. See file COPYING.
;;; Find immediate dominators in a directed graph
;;; Mark Reinhold (mbr@research.nj.nec.com)/3 February 1995
; Debugging code removed and everything reluctantly Scheme-ized by
; R. Kelsey, St. Valentine's Day, 1995
; This fast dominator code is based upon Lengauer and Tarjan, "A Fast
; Algorithm for Finding Dominators in a Flowgraph," ACM TOPLAS 1:1, pp.
; 121--141, July 1979. It runs in time $O(|E|\log|V|)$, where $|E|$ is the
; number of edges and $|V|$ is the number of vertices. A smaller time bound
; of $O(|E|\alpha(|E|,|V|))$, where $\alpha$ is the inverse of Ackerman's
; function, can be achieved with more complex versions of the internal link!
; and eval! procedures.
;
; The client provides a rooted, directed graph by passing a root node,
; successor and predecessor functions, and auxiliary procedures for accessing
; and setting a slot in each node. The dominator code creates a shadow of
; the client's graph using the vertex record type defined below. To keep
; things clear, the client's graph is considered to contain "nodes," while
; the shadow graph contains "vertices."
(define-record-type vertex :vertex
(really-make-vertex node semi bucket ancestor debug)
vertex?
(node vertex-node) ; Corresponding node in client's graph
(semi vertex-semi ; A number for this vertex, w, as follows:
set-vertex-semi!) ; After w is numbered, but before its semidominator
; is computed: w's DFS number
; After w's semidominator is computed:
; the number of its semidominator
(parent vertex-parent ; Parent of this vertex in DFS spanning tree
set-vertex-parent!)
(pred vertex-pred ; Parents
set-vertex-pred!)
(label vertex-label ; Label in spanning forest, initially this vertex
set-vertex-label!)
(bucket vertex-bucket ; List of vertices whose semidominator is this vertex
set-vertex-bucket!)
(dom vertex-dom ; A vertex, as follows:
set-vertex-dom!) ; After step 3: If the semidominator of this
; vertex, w, is its immediate dominator, then
; this slot contains that vertex; otherwise,
; this slot is a vertex v whose number is
; smaller than w's and whose immediate dominator
; is also w's immediate dominator
; After step 4: The immediate dominator of this
; vertex
(ancestor vertex-ancestor ; An ancestor of this vertex in the spanning forest
set-vertex-ancestor!)
(debug vertex-debug ; Debug field ##
set-vertex-debug!))
(define (make-vertex node semi)
(really-make-vertex node
semi
'() ; bucket
#f ; ancestor
#f)) ; debug
(define (push-vertex-bucket! inf elt)
(set-vertex-bucket! inf (cons elt (vertex-bucket inf))))
(define (find-dominators-quickly! root ; root node
succ ; maps a node to its children
pred ; maps a node to its parents
slot ; result slot accessor
set-slot!) ; result slot setter
;; Compute the dominator tree of the given rooted, directed graph;
;; when done, the slot of each node will contain its immediate dominator.
;; Requires that each slot initially contain #f.
(define (dfs root)
(let ((n 0) (vertices '()))
(let go ((node root) (parent #f))
(let ((v (make-vertex node n)))
(set-slot! node v)
(set! n (+ n 1))
(set-vertex-parent! v parent)
(set-vertex-label! v v)
(set! vertices (cons v vertices))
(for-each (lambda (node)
(if (not (slot node))
(go node v)))
(succ node))))
(let ((vertex-map (list->vector (reverse! vertices))))
(do ((i 0 (+ i 1)))
((= i (vector-length vertex-map)))
(let ((v (vector-ref vertex-map i)))
(set-vertex-pred! v (map slot (pred (vertex-node v))))))
(values n vertex-map))))
(define (compress! v)
(let ((a (vertex-ancestor v)))
(if (vertex-ancestor a)
(begin
(compress! a)
(if (< (vertex-semi (vertex-label a))
(vertex-semi (vertex-label v)))
(set-vertex-label! v (vertex-label a)))
(set-vertex-ancestor! v (vertex-ancestor (vertex-ancestor v)))))))
(define (eval! v)
(cond ((not (vertex-ancestor v))
v)
(else
(compress! v)
(vertex-label v))))
(define (link! v w)
(set-vertex-ancestor! w v))
(receive (n vertex-map) (dfs root) ; Step 1
(do ((i (- n 1) (- i 1)))
((= i 0))
(let ((w (vector-ref vertex-map i)))
(for-each (lambda (v) ; Step 2
(let ((u (eval! v)))
(if (< (vertex-semi u)
(vertex-semi w))
(set-vertex-semi! w
(vertex-semi u)))))
(vertex-pred w))
(push-vertex-bucket! (vector-ref vertex-map (vertex-semi w)) w)
(link! (vertex-parent w) w)
(for-each (lambda (v) ; Step 3
;; T&L delete v from the bucket list at this point,
;; but there is no reason to do so
(let ((u (eval! v)))
(set-vertex-dom! v
(if (< (vertex-semi u)
(vertex-semi v))
u
(vertex-parent w)))))
(vertex-bucket (vertex-parent w)))))
(do ((i 1 (+ i 1))) ; Step 4
((= i n))
(let ((w (vector-ref vertex-map i)))
(if (not (eq? (vertex-dom w)
(vector-ref vertex-map (vertex-semi w))))
(set-vertex-dom! w
(vertex-dom (vertex-dom w))))))
(set-vertex-dom! (slot root) #f)
;(show-nodes root succ slot) ; ## debug
(do ((i 0 (+ i 1))) ; Set dominator pointers
((= i n))
(let ((w (vector-ref vertex-map i)))
(let ((d (vertex-dom w)))
(set-slot! (vertex-node w) (if d (vertex-node d) #f)))))))
;;; The fast dominator algorithm is difficult to prove correct, so the
;;; following slow code is provided in order to check its results. The slow
;;; algorithm, which runs in time $O(|E||V|)$, is adapted from Aho and Ullman,
;;; _The Theory of Parsing, Translation, and Compiling_, Prentice-Hall, 1973,
;;; p. 916.
(define (find-dominators-slowly! root succ pred slot set-slot!)
(define vertex-succ vertex-pred)
(define set-vertex-succ! set-vertex-pred!)
(define vertex-mark vertex-ancestor)
(define set-vertex-mark! set-vertex-ancestor!)
(define (dfs root)
(let ((n 0) (vertices '()))
(let go ((node root) (parent #f))
(let ((v (make-vertex node n)))
(set-slot! node v)
(set! n (+ n 1))
(set! vertices (cons v vertices))
(set-vertex-parent! v #f)
(set-vertex-label! v #f)
(for-each (lambda (node)
(if (not (slot node))
(go node v)))
(succ node))))
(for-each (lambda (v)
(set-vertex-succ! v (map slot (succ (vertex-node v)))))
vertices)
(values n (reverse! vertices))))
(receive (n vertices) (dfs root)
(define (inaccessible v)
;; Determine set of vertices that are inaccessible if vertex v is ignored
(set-vertex-mark! v #t)
(let go ((w (car vertices)))
(set-vertex-mark! w #t)
(for-each (lambda (u)
(if (not (vertex-mark u))
(go u)))
(vertex-succ w)))
(filter (lambda (w)
(cond
((vertex-mark w)
(set-vertex-mark! w #f)
#f)
(else #t)))
vertices))
(for-each (lambda (v) (set-vertex-dom! v (car vertices)))
(cdr vertices))
(for-each (lambda (v)
(let ((dominated-by-v (inaccessible v)))
(for-each (lambda (w)
(if (eq? (vertex-dom w) (vertex-dom v))
(set-vertex-dom! w v)))
dominated-by-v)))
(cdr vertices))
(set-vertex-dom! (car vertices) #f)
;(show-nodes root succ slot) ; ## debug
(for-each (lambda (v)
(set-slot! (vertex-node v)
(let ((d (vertex-dom v)))
(if d (vertex-node d) #f))))
vertices)))
(define (time-thunk thunk) (thunk))
(define (find-and-check-dominators! root succ pred slot set-slot!)
(let ((set-fast-slot! (lambda (x v) (set-car! (slot x) v)))
(fast-slot (lambda (x) (car (slot x))))
(set-slow-slot! (lambda (x v) (set-cdr! (slot x) v)))
(slow-slot (lambda (x) (cdr (slot x)))))
(let go ((node root))
(set-slot! node (cons #f #f))
(for-each (lambda (node)
(if (not (slot node))
(go node)))
(succ node)))
(let ((fast (time-thunk
(lambda ()
(find-dominators-quickly!
root succ pred fast-slot set-fast-slot!))))
(slow (time-thunk (lambda ()
(find-dominators-slowly!
root succ pred slow-slot set-slow-slot!)))))
; (format #t "** find-and-check-dominators!: fast ~a, slow ~a~%" fast slow) ; ##
(let go ((node root))
(if (not (eq? (fast-slot node) (slow-slot node)))
(bug "Dominator algorithm error"))
(set-slot! node (fast-slot node))
(for-each (lambda (node)
(if (pair? (slot node)) ; ## Assumes nodes are not pairs
(go node)))
(succ node))))))
(define *check?* #t)
(define (find-dominators! . args)
(apply (if *check?*
find-and-check-dominators!
find-dominators-quickly!)
args))
|