1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
; Copyright (c) 1993-2008 by Richard Kelsey. See file COPYING.
; Code to determine the separation vertices of a graph
; NODES is a list of nodes
; (TO node) returns a list of the nodes which are connected to this one
; (SLOT-NODE node) and (SET-SLOT! node value) are used by the algorithm to
; associate data with nodes (in the absence of a tables).
(define (separation-vertices nodes to slot set-slot!)
(cond ((null? nodes)
(values '() '()))
((null? (cdr nodes))
(values nodes (list nodes)))
(else
(receive (separators components)
(real-separation-vertices (make-vertices nodes to slot set-slot!))
(for-each (lambda (n) (set-slot! n #f)) nodes)
(values separators components)))))
(define-record-type vertex :vertex
(really-make-vertex data edges dfs-index)
vertex?
(data vertex-data) ; user's data
(edges vertex-edges ; list of edges from this vertex
set-vertex-edges!)
(dfs-index vertex-dfs-index ; ordering from depth-first-search
set-vertex-dfs-index!)
(level vertex-level ; value used in algorithm...
set-vertex-level!)
(parent vertex-parent ; parent of this node in DFS tree
set-vertex-parent!))
(define (make-vertex data)
(really-make-vertex data '() 0))
(define-record-type edge :edge
(make-edge from to unused?)
(from edge-from) ; two (unordered) vertices
(to edge-to)
(unused? edge-unused ; used to mark edges that have been traversed
set-edge-unused!))
(define (make-edge from to)
(really-make-edge from to #t))
(define (other-vertex edge v)
(if (eq? v (edge-from edge))
(edge-to edge)
(edge-from edge)))
(define (maybe-add-edge from to)
(if (and (not (eq? from to))
(not (any? (lambda (e)
(or (eq? to (edge-from e))
(eq? to (edge-to e))))
(vertex-edges from))))
(let ((e (make-edge from to)))
(set-vertex-edges! from (cons e (vertex-edges from)))
(set-vertex-edges! to (cons e (vertex-edges to))))))
(define (make-vertices nodes to slot set-slot!)
(let ((vertices (map (lambda (n)
(let ((v (make-vertex n)))
(set-slot! n v)
v))
nodes)))
(for-each (lambda (n)
(for-each (lambda (n0)
(maybe-add-edge (slot n) (slot n0)))
(to n)))
nodes)
vertices))
; The numbers are the algorithm step numbers from page 62 of Graph Algorithms,
; Shimon Even, Computer Science Press, 1979.
; Them Us
; L(v) (vertex-level v)
; k(v) (vertex-dfs-index v)
; f(v) (vertex-parent v)
; S stack
; s start
(define (real-separation-vertices vertices)
(do-vertex (car vertices) 0 '() (car vertices) '() '()))
; 2
(define (do-vertex v i stack start v-res c-res)
(let ((i (+ i 1)))
(set-vertex-level! v i)
(set-vertex-dfs-index! v i)
(find-unused-edge v i (cons v stack) start v-res c-res)))
; 3
(define (find-unused-edge v i stack start v-res c-res)
(let ((e (first edge-unused? (vertex-edges v))))
(if e
(do-edge e v i stack start v-res c-res)
(no-unused-edge v i stack start v-res c-res))))
; 4
(define (do-edge e v i stack start v-res c-res)
(let ((u (other-vertex e v)))
(set-edge-unused?! e #f)
(cond ((= 0 (vertex-dfs-index u))
(set-vertex-parent! u v)
(do-vertex u i stack start v-res c-res))
(else
(if (> (vertex-level v)
(vertex-dfs-index u))
(set-vertex-level! v (vertex-dfs-index u)))
(find-unused-edge v i stack start v-res c-res)))))
; 5
(define (no-unused-edge v i stack start v-res c-res)
(let* ((parent (vertex-parent v))
(p-dfs-index (vertex-dfs-index parent)))
(cond ((= 1 p-dfs-index)
(gather-nonseparable-with-start v i stack start v-res c-res))
((< (vertex-level v) p-dfs-index)
(if (< (vertex-level v)
(vertex-level parent))
(set-vertex-level! parent (vertex-level v)))
(find-unused-edge parent i stack start v-res c-res))
(else
(gather-nonseparable v i stack start v-res c-res)))))
; 7
(define (gather-nonseparable v i stack start v-res c-res)
(let* ((parent (vertex-parent v))
(data (vertex-data parent)))
(receive (vertices stack)
(pop-down-to stack v)
(find-unused-edge parent
i
stack
start
(if (not (memq? data v-res))
(cons data v-res)
v-res)
(cons (cons data (map vertex-data vertices)) c-res)))))
; 9
(define (gather-nonseparable-with-start v i stack start v-res c-res)
(receive (vertices stack)
(pop-down-to stack v)
(let* ((data (vertex-data start))
(c-res (cons (cons data (map vertex-data vertices)) c-res)))
(if (not (any? edge-unused? (vertex-edges start)))
(values v-res c-res)
(find-unused-edge start
i
stack
start
(if (not (memq? data v-res))
(cons data v-res)
v-res)
c-res)))))
(define (pop-down-to stack v)
(do ((stack stack (cdr stack))
(res '() (cons (car stack) res)))
((eq? v (car stack))
(values (cons v res) (cdr stack)))))
(define (test-separation-vertices graph)
(let ((nodes (map (lambda (n)
(vector (car n) #f #f))
graph)))
(for-each (lambda (data node)
(vector-set! node 1 (map (lambda (s)
(first (lambda (v)
(eq? s (vector-ref v 0)))
nodes))
(cdr data))))
graph
nodes)
(receive (separation-vertices components)
(separation-vertices nodes
(lambda (v) (vector-ref v 1))
(lambda (v) (vector-ref v 2))
(lambda (v val) (vector-set! v 2 val)))
(values (map (lambda (v) (vector-ref v 0)) separation-vertices)
(map (lambda (l)
(map (lambda (v) (vector-ref v 0))
l))
components)))))
|