File: separators.scm

package info (click to toggle)
scheme48 1.8%2Bdfsg-1%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 14,984 kB
file content (195 lines) | stat: -rw-r--r-- 5,728 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
; Copyright (c) 1993-2008 by Richard Kelsey.  See file COPYING.


; Code to determine the separation vertices of a graph

; NODES is a list of nodes
; (TO node) returns a list of the nodes which are connected to this one
; (SLOT-NODE node) and (SET-SLOT! node value) are used by the algorithm to
; associate data with nodes (in the absence of a tables).

(define (separation-vertices nodes to slot set-slot!)
  (cond ((null? nodes)
	 (values '() '()))
	((null? (cdr nodes))
	 (values nodes (list nodes)))
	(else
	 (receive (separators components)
	     (real-separation-vertices (make-vertices nodes to slot set-slot!))
	   (for-each (lambda (n) (set-slot! n #f)) nodes)
	   (values separators components)))))

(define-record-type vertex :vertex
  (really-make-vertex data edges dfs-index)
  vertex?
  (data vertex-data)                  ; user's data
  (edges vertex-edges                 ; list of edges from this vertex
	 set-vertex-edges!)    
  (dfs-index vertex-dfs-index         ; ordering from depth-first-search
	     set-vertex-dfs-index!)    
  (level vertex-level                 ; value used in algorithm...
	 set-vertex-level!)
  (parent vertex-parent               ; parent of this node in DFS tree
	  set-vertex-parent!))

(define (make-vertex data)
  (really-make-vertex data '() 0))

(define-record-type edge :edge
  (make-edge from to unused?)
  (from edge-from)             ; two (unordered) vertices
  (to edge-to)
  (unused? edge-unused         ; used to mark edges that have been traversed
	   set-edge-unused!))

(define (make-edge from to)
  (really-make-edge from to #t))

(define (other-vertex edge v)
  (if (eq? v (edge-from edge))
      (edge-to edge)
      (edge-from edge)))

(define (maybe-add-edge from to)
  (if (and (not (eq? from to))
	   (not (any? (lambda (e)
			(or (eq? to (edge-from e))
			    (eq? to (edge-to e))))
		      (vertex-edges from))))
      (let ((e (make-edge from to)))
	(set-vertex-edges! from (cons e (vertex-edges from)))
	(set-vertex-edges! to   (cons e (vertex-edges to))))))

(define (make-vertices nodes to slot set-slot!)
  (let ((vertices (map (lambda (n)
			 (let ((v (make-vertex n)))
			   (set-slot! n v)
			   v))
		       nodes)))
    (for-each (lambda (n)
		(for-each (lambda (n0)
			    (maybe-add-edge (slot n) (slot n0)))
			  (to n)))
	      nodes)
    vertices))
    
; The numbers are the algorithm step numbers from page 62 of Graph Algorithms,
; Shimon Even, Computer Science Press, 1979.
; Them           Us
;  L(v)     (vertex-level v)
;  k(v)     (vertex-dfs-index v)
;  f(v)     (vertex-parent v)
;  S        stack
;  s        start

(define (real-separation-vertices vertices)
  (do-vertex (car vertices) 0 '() (car vertices) '() '()))

; 2

(define (do-vertex v i stack start v-res c-res)
  (let ((i (+ i 1)))
    (set-vertex-level! v i)
    (set-vertex-dfs-index! v i)
    (find-unused-edge v i (cons v stack) start v-res c-res)))

; 3

(define (find-unused-edge v i stack start v-res c-res)
  (let ((e (first edge-unused? (vertex-edges v))))
    (if e
	(do-edge e v i stack start v-res c-res)
	(no-unused-edge v i stack start v-res c-res))))

; 4

(define (do-edge e v i stack start v-res c-res)
  (let ((u (other-vertex e v)))
    (set-edge-unused?! e #f)
    (cond ((= 0 (vertex-dfs-index u))
	   (set-vertex-parent! u v)
	   (do-vertex u i stack start v-res c-res))
	  (else
	   (if (> (vertex-level v)
		  (vertex-dfs-index u))
	       (set-vertex-level! v (vertex-dfs-index u)))
	   (find-unused-edge v i stack start v-res c-res)))))

; 5

(define (no-unused-edge v i stack start v-res c-res)
  (let* ((parent (vertex-parent v))
	 (p-dfs-index (vertex-dfs-index parent)))
    (cond ((= 1 p-dfs-index)
	   (gather-nonseparable-with-start v i stack start v-res c-res))
	  ((< (vertex-level v) p-dfs-index)
	   (if (< (vertex-level v)
		  (vertex-level parent))
	       (set-vertex-level! parent (vertex-level v)))
	   (find-unused-edge parent i stack start v-res c-res))
	  (else
	   (gather-nonseparable v i stack start v-res c-res)))))

; 7

(define (gather-nonseparable v i stack start v-res c-res)
  (let* ((parent (vertex-parent v))
	 (data (vertex-data parent)))
    (receive (vertices stack)
	(pop-down-to stack v)
      (find-unused-edge parent
			i
			stack
			start
			(if (not (memq? data v-res))
			    (cons data v-res)
			    v-res)
			(cons (cons data (map vertex-data vertices)) c-res)))))

; 9

(define (gather-nonseparable-with-start v i stack start v-res c-res)
  (receive (vertices stack)
      (pop-down-to stack v)
    (let* ((data (vertex-data start))
	   (c-res (cons (cons data (map vertex-data vertices)) c-res)))
      (if (not (any? edge-unused? (vertex-edges start)))
	  (values v-res c-res)
	  (find-unused-edge start
			    i
			    stack
			    start
			    (if (not (memq? data v-res))
				(cons data v-res)
				v-res)
			    c-res)))))

(define (pop-down-to stack v)
  (do ((stack stack (cdr stack))
       (res '() (cons (car stack) res)))
      ((eq? v (car stack))
       (values (cons v res) (cdr stack)))))

(define (test-separation-vertices graph)
  (let ((nodes (map (lambda (n)
		      (vector (car n) #f #f))
		    graph)))
    (for-each (lambda (data node)
		(vector-set! node 1 (map (lambda (s)
					   (first (lambda (v)
						    (eq? s (vector-ref v 0)))
						  nodes))
					 (cdr data))))
	      graph
	      nodes)
    (receive (separation-vertices components)
	(separation-vertices nodes
			     (lambda (v) (vector-ref v 1))
			     (lambda (v) (vector-ref v 2))
			     (lambda (v val) (vector-set! v 2 val)))
      (values (map (lambda (v) (vector-ref v 0)) separation-vertices)
	      (map (lambda (l)
		     (map (lambda (v) (vector-ref v 0))
			  l))
		   components)))))