1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
; Copyright (c) 1993-2008 by Richard Kelsey. See file COPYING.
; General transitive closure
; (make-graph-from-predecessors nodes node-parents node-temp set-node-temp!)
; -> graph
; (make-graph-from-successors nodes node-kids node-temp set-node-temp!)
; -> graph
;
; (transitive-or! graph elements set-elements! element-temp set-element-temp!)
; (transitive-or-with-kill! graph elements set-elements! node-kills element-temp set-element-temp!)
; (transitive-or-with-pass! graph elements set-elements! node-passes element-temp set-element-temp!)
;
; (transitive-and! graph elements set-elements! element-temp set-element-temp!)
; (transitive-and-with-kill! graph elements set-elements! node-kills element-temp set-element-temp!)
; (transitive-and-with-pass! graph elements set-elements! node-passes element-temp set-element-temp!)
;----------------
(define (make-graph-from-predecessors user-nodes user-node-parents node-temp set-node-temp!)
(let ((nodes (make-nodes user-nodes set-node-temp!)))
(connect-nodes-using-parents! nodes user-node-parents node-temp)
(for-each (lambda (node)
(set-node-temp! (node-data node) #f))
nodes)
(make-graph nodes)))
(define (make-graph-from-successors user-nodes user-node-kids node-temp set-node-temp!)
(let ((nodes (make-nodes user-nodes set-node-temp!)))
(connect-nodes-using-children! nodes user-node-kids node-temp)
(for-each (lambda (node)
(set-node-temp! (node-data node) #f))
nodes)
(make-graph nodes)))
(define (make-nodes user-nodes set-node-temp!)
(map (lambda (data)
(let ((node (node-maker data '() '())))
(set-node-temp! data node)
node))
user-nodes))
(define-record-type graph
(nodes ; list of nodes
)
())
(define make-graph graph-maker)
(define-record-type node
(data ; user's data
(parents) ; predecessors
(kids)) ; successors
(elt-set ; elements
kill-set ; elements that are not passed
changed? ; change flag for iteration
))
;------------------------------
; Six false fronts for the real procedure.
(define (transitive-or! graph elts set-elts! elt-hash set-elt-hash!)
(do-it graph elts set-elts! #f #f elt-hash set-elt-hash!
(transitive-or-closure! or-update-node)))
(define (transitive-or-with-kill! graph elts set-elts! kill-elts elt-hash set-elt-hash!)
(do-it graph elts set-elts! kill-elts #f elt-hash set-elt-hash!
(transitive-or-closure! or-update-node-with-kill)))
(define (transitive-or-with-pass! graph elts set-elts! pass-elts elt-hash set-elt-hash!)
(do-it graph elts set-elts! pass-elts #t elt-hash set-elt-hash!
(transitive-or-closure! or-update-node-with-kill)))
(define (transitive-and! graph elts set-elts! elt-hash set-elt-hash!)
(do-it graph elts set-elts! #f #f elt-hash set-elt-hash!
(transitive-and-closure! and-update-node)))
(define (transitive-and-with-kill! graph elts set-elts! kill-elts elt-hash set-elt-hash!)
(do-it graph elts set-elts! kill-elts #f elt-hash set-elt-hash!
(transitive-and-closure! and-update-node-with-kill)))
(define (transitive-and-with-pass! graph elts set-elts! pass-elts elt-hash set-elt-hash!)
(do-it graph elts set-elts! pass-elts #t elt-hash set-elt-hash!
(transitive-and-closure! and-update-node-with-kill)))
(define (do-it graph elts set-elts! kill-elts pass? elt-hash set-elt-hash! op)
(let* ((nodes (graph-nodes graph))
(elt-unhash-vec (add-elements! nodes elts kill-elts pass?
elt-hash set-elt-hash!)))
(op nodes)
(record-results! nodes elt-unhash-vec set-elts!)
(do ((i 0 (+ i 1)))
((= i (vector-length elt-unhash-vec)))
(set-elt-hash! (vector-ref elt-unhash-vec i) #f))
(values)))
;----------------
; Setting the kids field of the nodes
(define (connect-nodes-using-children! nodes children node-slot)
(for-each
(lambda (node)
(set-node-kids! node
(map (lambda (kid)
(let ((t (node-slot kid)))
(if (not (node? t))
(missing-node-error kid "child" node))
(set-node-parents! t
(cons node
(node-parents t)))
t))
(children (node-data node)))))
nodes))
(define (connect-nodes-using-parents! nodes parents node-slot)
(for-each
(lambda (node)
(set-node-parents! node
(map (lambda (parent)
(let ((t (node-slot parent)))
(if (not (node? t))
(missing-node-error t "parent" node))
(set-node-kids! t
(cons node
(node-kids t)))
t))
(parents (node-data node)))))
nodes))
(define (missing-node-error node relationship relation)
(error (format #f "Transitive - ~S, ~A of ~S, not in list of nodes"
node relationship (node-data relation))))
;----------------
(define (add-elements! nodes node-elements node-kills pass?
element-temp set-element-temp!)
(let ((unhash-vec (element-hasher nodes node-elements element-temp set-element-temp!))
(element-hash (make-element-hash element-temp)))
(for-each (lambda (node)
(set-node-elt-set! node
(make-element-set (node-elements (node-data node))
element-hash)))
nodes)
(if node-kills
(for-each (lambda (node)
(let ((kill-set (make-element-set (node-kills (node-data node))
element-hash)))
(set-node-kill-set! node (if pass?
(integer-set-not kill-set)
kill-set))))
nodes))
unhash-vec))
(define (make-element-set elts elt-hash)
(let loop ((elts elts) (set (make-empty-integer-set)))
(if (null? elts)
set
(loop (cdr elts)
(cond ((elt-hash (car elts))
=> (lambda (hash)
(add-to-integer-set set hash)))
(else set))))))
;----------------
; Counting the elements and assigning numbers to them
(define-record-type element-hash
(number ; the element-hash record is just a way of tagging this number
) ; with a unique predicate
())
(define (element-hasher nodes elts elt-hash set-elt-hash!)
(let loop ((to-do '()) (ts nodes) (all-elts '()) (count 0))
(cond ((null? to-do)
(if (null? ts)
(real-element-hasher all-elts count)
(loop (elts (node-data (car ts))) (cdr ts) all-elts count)))
((element-hash? (elt-hash (car to-do)))
(loop (cdr to-do) ts all-elts count))
(else
(set-elt-hash! (car to-do) (element-hash-maker count))
(loop (cdr to-do) ts (cons (car to-do) all-elts) (+ count 1))))))
(define (real-element-hasher elts count)
(let ((unhash-vec (make-vector count)))
(do ((i (- count 1) (- i 1))
(elts elts (cdr elts)))
((null? elts))
(vector-set! unhash-vec i (car elts)))
unhash-vec))
(define (make-element-hash elt-hash)
(lambda (elt)
(let ((hash (elt-hash elt)))
(if (element-hash? hash)
(element-hash-number hash)
#f))))
;----------------
; Turn the element sets into lists of elements and clean up stray pointers
; at the same time.
(define (record-results! nodes elt-unhash-vec set-elts!)
(for-each (lambda (node)
(set-elts! (node-data node)
(map-over-integer-set
(lambda (i) (vector-ref elt-unhash-vec i))
(node-elt-set node)))
(set-node-elt-set! node #f)
(set-node-kill-set! node #f))
nodes))
;----------------
; The OR algorithm - keeps passing elements around until the changes stop.
(define (transitive-or-closure! op)
(lambda (nodes)
(for-each (lambda (node)
(set-node-changed?! node #t))
nodes)
(let loop ((to-do nodes))
(if (not (null? to-do))
(let* ((node (car to-do))
(elt-set (node-elt-set node)))
(set-node-changed?! node #f)
(let kids-loop ((ts (node-kids node))
(to-do (cdr to-do)))
(cond ((null? ts)
(loop to-do))
((and (op (car ts) elt-set)
(not (node-changed? (car ts))))
(set-node-changed?! (car ts) #t)
(kids-loop (cdr ts) (cons (car ts) to-do)))
(else
(kids-loop (cdr ts) to-do)))))))))
; The weird function INTEGER-SET-SUBTRACT&IOR-WITH-TEST! takes three integer
; sets, subtracts the second from the first and inclusive OR's the result
; with the third. It returns the resulting set and a flag which is #T if
; the result is not the same as the original third set. The inclusive OR
; may be destructive.
(define (or-update-node-with-kill node elt-set)
(receive (set change?)
(integer-set-subtract&ior-with-test! elt-set
(node-kill-set node)
(node-elt-set node))
(set-node-elt-set! node set)
change?))
(define (or-update-node node elt-set)
(receive (set change?)
(integer-set-ior-with-test! elt-set
(node-elt-set node))
(set-node-elt-set! node set)
change?))
; Implementations using simpler, nondestructive operations (these might be
; done more efficiently if they had access to the underlying representation
; of integer sets).
(define (integer-set-subtract&ior-with-test! set1 set2 set3)
(let ((result (integer-set-ior set3 (integer-set-subtract set1 set2))))
(values result (not (integer-set-equal? set3 result)))))
(define (integer-set-ior-with-test! set1 set3)
(let ((result (integer-set-ior set3 set1)))
(values result (not (integer-set-equal? set3 result)))))
;----------------
; The AND algorithm - keeps a to-do list of nodes whose parents' elements
; have changed, instead of a list of nodes whose elements have changed.
(define (transitive-and-closure! op)
(lambda (nodes)
(let loop ((to-do (filter (lambda (node)
(if (not (null? (node-parents node)))
(begin
(set-node-changed?! node #t)
#t)
#f))
nodes)))
(if (not (null? to-do))
(let ((node (car to-do)))
(set-node-changed?! node #f)
(if (op node)
(let kids-loop ((ts (node-kids node))
(to-do (cdr to-do)))
(cond ((null? ts)
(loop to-do))
((node-changed? (car ts))
(kids-loop (cdr ts) to-do))
(else
(set-node-changed?! (car ts) #t)
(kids-loop (cdr ts) (cons (car ts) to-do)))))
(loop (cdr to-do))))))))
; These are the same as for OR except that we AND together the parents'
; elt-sets instead of using the one provided.
(define (and-update-node-with-kill node)
(receive (set change?)
(integer-set-subtract&ior-with-test! (parents-elt-set node)
(node-kill-set node)
(node-elt-set node))
(set-node-elt-set! node set)
change?))
(define (and-update-node node)
(receive (set change?)
(integer-set-ior-with-test! (parents-elt-set node)
(node-elt-set node))
(set-node-elt-set! node set)
change?))
(define (parents-elt-set node)
(do ((parents (cdr (node-parents node))
(cdr parents))
(elts (node-elt-set (car (node-parents node)))
(integer-set-and elts (node-elt-set (car parents)))))
((null? parents)
elts)))
;------------------------------------------------------------
; Testing
; GRAPH is ((<symbol> name
; (element*) elements
; (element*) kills
; . <symbol*>)*) children
;
'((node1 (elt1 elt2) () node2)
(node2 (elt3) (elt2) node1 node3)
(node3 () () ))
'((a (1) () b)
(b () () ))
'((a (1 2 3 4) (1) b)
(b () (2) c)
(c () (3) d)
(d (5) (4) a))
(define (test-transitive graph down? or? pass?)
(let* ((elts '())
(get-elt (lambda (sym)
(cond ((first (lambda (v)
(eq? sym (vector-ref v 0)))
elts)
=> identity)
(else
(let ((new (vector sym #f)))
(set! elts (cons new elts))
new)))))
(vertices (map (lambda (n)
(vector (car n)
(map get-elt (cadr n))
(map get-elt (caddr n))
#f #f))
graph)))
(for-each (lambda (data vertex)
(vector-set! vertex 3 (map (lambda (s)
(first (lambda (v)
(eq? s (vector-ref v 0)))
vertices))
(cdddr data))))
graph
vertices)
(let ((the-graph ((if down?
make-graph-from-successors
make-graph-from-predecessors)
vertices
(lambda (x) (vector-ref x 3))
(lambda (x) (vector-ref x 4))
(lambda (x v) (vector-set! x 4 v)))))
(if (every? (lambda (n) (null? (caddr n))) graph)
((if or? transitive-or! transitive-and!)
the-graph
(lambda (v) (vector-ref v 1)) ; elts
(lambda (v x) (vector-set! v 1 x)) ; set-elts!
(lambda (e) (vector-ref e 1)) ; elt-hash
(lambda (e x) (vector-set! e 1 x))) ; set-elt-hash!
((if or?
(if pass?
transitive-or-with-pass!
transitive-or-with-kill!)
(if pass?
transitive-and-with-pass!
transitive-and-with-kill!))
the-graph
(lambda (v) (vector-ref v 1)) ; elts
(lambda (v x) (vector-set! v 1 x)) ; set-elts!
(lambda (v) (vector-ref v 2)) ; kills
(lambda (e) (vector-ref e 1)) ; elt-hash
(lambda (e x) (vector-set! e 1 x))))) ; set-elt-hash!
(map (lambda (v)
(list (vector-ref v 0)
(map (lambda (e) (vector-ref e 0))
(vector-ref v 1))))
vertices)))
|