File: transitive.scm

package info (click to toggle)
scheme48 1.8%2Bdfsg-1%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 14,984 kB
file content (401 lines) | stat: -rw-r--r-- 13,070 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
; Copyright (c) 1993-2008 by Richard Kelsey.  See file COPYING.

; General transitive closure

; (make-graph-from-predecessors nodes node-parents node-temp set-node-temp!)
;            -> graph
; (make-graph-from-successors nodes node-kids node-temp set-node-temp!)
;            -> graph
;
; (transitive-or! graph elements set-elements! element-temp set-element-temp!)
; (transitive-or-with-kill! graph elements set-elements! node-kills element-temp set-element-temp!)
; (transitive-or-with-pass! graph elements set-elements! node-passes element-temp set-element-temp!)
;
; (transitive-and! graph elements set-elements! element-temp set-element-temp!)
; (transitive-and-with-kill! graph elements set-elements! node-kills element-temp set-element-temp!)
; (transitive-and-with-pass! graph elements set-elements! node-passes element-temp set-element-temp!)

;----------------

(define (make-graph-from-predecessors user-nodes user-node-parents node-temp set-node-temp!)
  (let ((nodes (make-nodes user-nodes set-node-temp!)))
    (connect-nodes-using-parents! nodes user-node-parents node-temp)
    (for-each (lambda (node)
		(set-node-temp! (node-data node) #f))
	      nodes)
    (make-graph nodes)))

(define (make-graph-from-successors user-nodes user-node-kids node-temp set-node-temp!)
  (let ((nodes (make-nodes user-nodes set-node-temp!)))
    (connect-nodes-using-children! nodes user-node-kids node-temp)
    (for-each (lambda (node)
		(set-node-temp! (node-data node) #f))
	      nodes)
    (make-graph nodes)))

(define (make-nodes user-nodes set-node-temp!)    
  (map (lambda (data)
	 (let ((node (node-maker data '() '())))
	   (set-node-temp! data node)
	   node))
       user-nodes))

(define-record-type graph
  (nodes         ; list of nodes
   )
  ())

(define make-graph graph-maker)
  
(define-record-type node
  (data          ; user's data
   (parents)     ; predecessors
   (kids))       ; successors
  (elt-set       ; elements
   kill-set      ; elements that are not passed
   changed?      ; change flag for iteration
   ))

;------------------------------
; Six false fronts for the real procedure.

(define (transitive-or! graph elts set-elts! elt-hash set-elt-hash!)
  (do-it graph elts set-elts! #f #f elt-hash set-elt-hash!
	 (transitive-or-closure! or-update-node)))

(define (transitive-or-with-kill! graph elts set-elts! kill-elts elt-hash set-elt-hash!)
  (do-it graph elts set-elts! kill-elts #f elt-hash set-elt-hash!
	 (transitive-or-closure! or-update-node-with-kill)))

(define (transitive-or-with-pass! graph elts set-elts! pass-elts elt-hash set-elt-hash!)
  (do-it graph elts set-elts! pass-elts #t elt-hash set-elt-hash!
	 (transitive-or-closure! or-update-node-with-kill)))

(define (transitive-and! graph elts set-elts! elt-hash set-elt-hash!)
  (do-it graph elts set-elts! #f #f elt-hash set-elt-hash!
	 (transitive-and-closure! and-update-node)))

(define (transitive-and-with-kill! graph elts set-elts! kill-elts elt-hash set-elt-hash!)
  (do-it graph elts set-elts! kill-elts #f elt-hash set-elt-hash!
	 (transitive-and-closure! and-update-node-with-kill)))

(define (transitive-and-with-pass! graph elts set-elts! pass-elts elt-hash set-elt-hash!)
  (do-it graph elts set-elts! pass-elts #t elt-hash set-elt-hash!
	 (transitive-and-closure! and-update-node-with-kill)))

(define (do-it graph elts set-elts! kill-elts pass? elt-hash set-elt-hash! op)
  (let* ((nodes (graph-nodes graph))
	 (elt-unhash-vec (add-elements! nodes elts kill-elts pass?
					elt-hash set-elt-hash!)))
    (op nodes)
    (record-results! nodes elt-unhash-vec set-elts!)
    (do ((i 0 (+ i 1)))
	((= i (vector-length elt-unhash-vec)))
      (set-elt-hash! (vector-ref elt-unhash-vec i) #f))
    (values)))

;----------------
; Setting the kids field of the nodes

(define (connect-nodes-using-children! nodes children node-slot)
  (for-each
   (lambda (node)
     (set-node-kids! node
		      (map (lambda (kid)
			     (let ((t (node-slot kid)))
			       (if (not (node? t))
				   (missing-node-error kid "child" node))
			       (set-node-parents! t
						   (cons node
							 (node-parents t)))
			       t))
			   (children (node-data node)))))
   nodes))

(define (connect-nodes-using-parents! nodes parents node-slot)
  (for-each
   (lambda (node)
     (set-node-parents! node
			 (map (lambda (parent)
				(let ((t (node-slot parent)))
				  (if (not (node? t))
				      (missing-node-error t "parent" node))
				  (set-node-kids! t
						   (cons node
							 (node-kids t)))
				  t))
			      (parents (node-data node)))))
   nodes))

(define (missing-node-error node relationship relation)
  (error (format #f "Transitive - ~S, ~A of ~S, not in list of nodes"
		 node relationship (node-data relation))))

;----------------

(define (add-elements! nodes node-elements node-kills pass?
		       element-temp set-element-temp!)
  (let ((unhash-vec (element-hasher nodes node-elements element-temp set-element-temp!))
	(element-hash (make-element-hash element-temp)))
    (for-each (lambda (node)
		(set-node-elt-set! node
				   (make-element-set (node-elements (node-data node))
						     element-hash)))
	      nodes)
    (if node-kills
	(for-each (lambda (node)
		    (let ((kill-set (make-element-set (node-kills (node-data node))
						      element-hash)))
		      (set-node-kill-set! node (if pass?
						   (integer-set-not kill-set)
						   kill-set))))
		  nodes))
    unhash-vec))

(define (make-element-set elts elt-hash)
  (let loop ((elts elts) (set (make-empty-integer-set)))
    (if (null? elts)
	set
	(loop (cdr elts)
	      (cond ((elt-hash (car elts))
		     => (lambda (hash)
			  (add-to-integer-set set hash)))
		    (else set))))))

;----------------
; Counting the elements and assigning numbers to them

(define-record-type element-hash
  (number  ; the element-hash record is just a way of tagging this number
   )       ; with a unique predicate
  ())

(define (element-hasher nodes elts elt-hash set-elt-hash!)
  (let loop ((to-do '()) (ts nodes) (all-elts '()) (count 0))
    (cond ((null? to-do)
	   (if (null? ts)
	       (real-element-hasher all-elts count)
	       (loop (elts (node-data (car ts))) (cdr ts) all-elts count)))
	  ((element-hash? (elt-hash (car to-do)))
	   (loop (cdr to-do) ts all-elts count))
	  (else
	   (set-elt-hash! (car to-do) (element-hash-maker count))
	   (loop (cdr to-do) ts (cons (car to-do) all-elts) (+ count 1))))))

(define (real-element-hasher elts count)
  (let ((unhash-vec (make-vector count)))
    (do ((i (- count 1) (- i 1))
	 (elts elts (cdr elts)))
	((null? elts))
      (vector-set! unhash-vec i (car elts)))
    unhash-vec))

(define (make-element-hash elt-hash)
  (lambda (elt)
    (let ((hash (elt-hash elt)))
      (if (element-hash? hash)
	  (element-hash-number hash)
	  #f))))

;----------------
; Turn the element sets into lists of elements and clean up stray pointers
; at the same time.

(define (record-results! nodes elt-unhash-vec set-elts!)
  (for-each (lambda (node)
	      (set-elts! (node-data node)
			 (map-over-integer-set
			  (lambda (i) (vector-ref elt-unhash-vec i))
			  (node-elt-set node)))
	      (set-node-elt-set! node #f)
	      (set-node-kill-set! node #f))
	    nodes))

;----------------
; The OR algorithm - keeps passing elements around until the changes stop.

(define (transitive-or-closure! op)
  (lambda (nodes)
    (for-each (lambda (node)
		(set-node-changed?! node #t))
	      nodes)
    (let loop ((to-do nodes))
      (if (not (null? to-do))
	  (let* ((node (car to-do))
		 (elt-set (node-elt-set node)))
	    (set-node-changed?! node #f)
	    (let kids-loop ((ts (node-kids node))
			    (to-do (cdr to-do)))
	      (cond ((null? ts)
		     (loop to-do))
		    ((and (op (car ts) elt-set)
			  (not (node-changed? (car ts))))
		     (set-node-changed?! (car ts) #t)
		     (kids-loop (cdr ts) (cons (car ts) to-do)))
		    (else
		     (kids-loop (cdr ts) to-do)))))))))

; The weird function INTEGER-SET-SUBTRACT&IOR-WITH-TEST! takes three integer
; sets, subtracts the second from the first and inclusive OR's the result
; with the third.  It returns the resulting set and a flag which is #T if
; the result is not the same as the original third set.  The inclusive OR
; may be destructive.

(define (or-update-node-with-kill node elt-set)
  (receive (set change?)
      (integer-set-subtract&ior-with-test! elt-set
					   (node-kill-set node)
					   (node-elt-set node))
    (set-node-elt-set! node set)
    change?))

(define (or-update-node node elt-set)
  (receive (set change?)
      (integer-set-ior-with-test! elt-set
				  (node-elt-set node))
    (set-node-elt-set! node set)
    change?))

; Implementations using simpler, nondestructive operations (these might be
; done more efficiently if they had access to the underlying representation
; of integer sets).

(define (integer-set-subtract&ior-with-test! set1 set2 set3)
  (let ((result (integer-set-ior set3 (integer-set-subtract set1 set2))))
    (values result (not (integer-set-equal? set3 result)))))

(define (integer-set-ior-with-test! set1 set3)
  (let ((result (integer-set-ior set3 set1)))
    (values result (not (integer-set-equal? set3 result)))))

;----------------
; The AND algorithm - keeps a to-do list of nodes whose parents' elements
; have changed, instead of a list of nodes whose elements have changed.

(define (transitive-and-closure! op)
  (lambda (nodes)
    (let loop ((to-do (filter (lambda (node)
				(if (not (null? (node-parents node)))
				    (begin
				      (set-node-changed?! node #t)
				      #t)
				    #f))
			      nodes)))
      (if (not (null? to-do))
	  (let ((node (car to-do)))
	    (set-node-changed?! node #f)
	    (if (op node)
		(let kids-loop ((ts (node-kids node))
				(to-do (cdr to-do)))
		  (cond ((null? ts)
			 (loop to-do))
			((node-changed? (car ts))
			 (kids-loop (cdr ts) to-do))
			(else
			 (set-node-changed?! (car ts) #t)
			 (kids-loop (cdr ts) (cons (car ts) to-do)))))
		(loop (cdr to-do))))))))
  
; These are the same as for OR except that we AND together the parents'
; elt-sets instead of using the one provided.

(define (and-update-node-with-kill node)
  (receive (set change?)
      (integer-set-subtract&ior-with-test! (parents-elt-set node)
					   (node-kill-set node)
					   (node-elt-set node))
    (set-node-elt-set! node set)
    change?))
  
(define (and-update-node node)
  (receive (set change?)
      (integer-set-ior-with-test! (parents-elt-set node)
				  (node-elt-set node))
    (set-node-elt-set! node set)
    change?))

(define (parents-elt-set node)
  (do ((parents (cdr (node-parents node))
		(cdr parents))
       (elts (node-elt-set (car (node-parents node)))
	     (integer-set-and elts (node-elt-set (car parents)))))
      ((null? parents)
       elts)))

;------------------------------------------------------------
; Testing

; GRAPH is ((<symbol>           name
;            (element*)         elements
;            (element*)         kills
;            . <symbol*>)*)     children
;
'((node1 (elt1 elt2) ()     node2)
  (node2 (elt3)      (elt2) node1 node3)
  (node3 ()          ()     ))

'((a (1) () b)
  (b ()  () ))

'((a (1 2 3 4) (1) b)
  (b ()        (2) c)
  (c ()        (3) d)
  (d (5)       (4) a))
             
(define (test-transitive graph down? or? pass?)
  (let* ((elts '())
	 (get-elt (lambda (sym)
		    (cond ((first (lambda (v)
				    (eq? sym (vector-ref v 0)))
				  elts)
			   => identity)
			  (else
			   (let ((new (vector sym #f)))
			     (set! elts (cons new elts))
			     new)))))
	 (vertices (map (lambda (n)
			  (vector (car n)
				  (map get-elt (cadr n))
				  (map get-elt (caddr n))
				  #f #f))
			graph)))
    (for-each (lambda (data vertex)
		(vector-set! vertex 3 (map (lambda (s)
					     (first (lambda (v)
						      (eq? s (vector-ref v 0)))
						    vertices))
					   (cdddr data))))
	      graph
	      vertices)
    (let ((the-graph ((if down?
			  make-graph-from-successors
			  make-graph-from-predecessors)
		      vertices
		      (lambda (x) (vector-ref x 3))
		      (lambda (x) (vector-ref x 4))
		      (lambda (x v) (vector-set! x 4 v)))))
      (if (every? (lambda (n) (null? (caddr n))) graph)
	  ((if or? transitive-or! transitive-and!)
	   the-graph
	   (lambda (v) (vector-ref v 1))        ; elts
	   (lambda (v x) (vector-set! v 1 x))   ; set-elts!
	   (lambda (e) (vector-ref e 1))        ; elt-hash
	   (lambda (e x) (vector-set! e 1 x)))  ; set-elt-hash!
          ((if or?					    
	       (if pass?
		   transitive-or-with-pass!
		   transitive-or-with-kill!)
	       (if pass?
		   transitive-and-with-pass!
		   transitive-and-with-kill!))
	   the-graph
	   (lambda (v) (vector-ref v 1))         ; elts
	   (lambda (v x) (vector-set! v 1 x))    ; set-elts!
	   (lambda (v) (vector-ref v 2))         ; kills
	   (lambda (e) (vector-ref e 1))         ; elt-hash
	   (lambda (e x) (vector-set! e 1 x))))) ; set-elt-hash!
    (map (lambda (v)
	   (list (vector-ref v 0)
		 (map (lambda (e) (vector-ref e 0))
		      (vector-ref v 1))))
	 vertices)))