1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
; Copyright (c) 1993-2008 by Richard Kelsey. See file COPYING.
(define (put-literal-first call)
(if (and (not (literal-node? (call-arg call 0)))
(literal-node? (call-arg call 1)))
(let ((arg1 (detach (call-arg call 0)))
(arg0 (detach (call-arg call 1))))
(attach call 0 arg0)
(attach call 1 arg1))))
(define-syntax addition-simplifier
(syntax-rules ()
((addition-simplifier + - zero)
(lambda (call)
(simplify-args call 0)
(put-literal-first call)
((pattern-simplifier
((+ 'zero x) x)
((+ 'a 'b) '(+ a b))
((+ 'a (+ 'b x)) (+ x '(+ a b)))
((+ 'a (- x 'b)) (+ x '(- a b))) ; no overflow in Scheme, but what
((+ 'a (- 'b x)) (- '(+ a b) x)) ; about PreScheme? Could check the
((+ (+ 'a x) (+ 'b y)) (+ '(+ a b) (+ x y)))
((+ x (+ 'a y)) (+ 'a (+ x y)))) ; result of the literal. Maybe these
call))))) ; should be left out.
(define-scheme-primop + #f type/integer (addition-simplifier + - 0))
(define-scheme-primop fl+ #f type/float (addition-simplifier fl+ fl- 0.0))
(define-scheme-primop un+ #f type/unsigned-integer (addition-simplifier un+ un- 0))
; The simplifiers think that the constant folders have the same name as
; the primops. It is easier to define these than to change the simplifiers.
(define fl+ +)
(define fl- -)
(define fl* *)
(define un+ +)
(define un- -)
(define un* *)
(define-syntax subtraction-simplifier
(syntax-rules ()
((subtraction-simplifier + - zero)
(lambda (call)
(simplify-args call 0)
((pattern-simplifier
((- 'a 'b) '(- a b))
((- x 'a) (+ '(- zero a) x))
((- 'a (+ 'b x)) (- '(- a b) x)) ; more overflow problems
((- 'a (- 'b x)) (+ x '(- a b)))
((- x (+ 'a y)) (+ '(- zero a) (- x y)))
; ((- (+ 'a x) y) (+ 'a (- x y))) need to come up with a normal form
((- (+ 'a x) (+ 'b y)) (- (+ '(- a b) x) y)))
call)))))
(define-scheme-primop - #f type/integer (subtraction-simplifier + - 0))
(define-scheme-primop un- #f type/unsigned-integer (subtraction-simplifier un+ un- 0))
(define-scheme-primop fl- #f type/float (subtraction-simplifier fl+ fl- 0.0))
; This should check for multiply by powers of 2 (other constants can be
; done later).
(define (simplify-multiply call)
(simplify-args call 0)
(put-literal-first call)
(cond ((power-of-two-literal (call-arg call 0))
=> (lambda (i)
(set-call-primop! call (get-prescheme-primop 'ashl))
(replace (call-arg call 0) (detach (call-arg call 1)))
(attach call 1 (make-literal-node i type/unknown))))
(else
((pattern-simplifier
((* '0 x) '0)
((* '1 x) x)
((* 'a 'b) '(* a b))
((* 'a (* x 'b)) (* x '(* a b)))
((* 'a (* 'b x)) (* x '(* a b))))
call))))
(define (power-of-two-literal node)
(if (not (literal-node? node))
#f
(let ((value (literal-value node)))
(if (not (and (integer? value)
(<= 1 value)))
#f
(do ((v value (arithmetic-shift v -1))
(i 0 (+ i 1)))
((odd? v)
(if (= v 1) i #f)))))))
(define simplify-float-multiply
(pattern-simplifier
((fl* '0.0 x) '0.0)
((fl* '1.0 x) x)
((fl* 'a 'b) '(fl* a b))
((fl* 'a (fl* x 'b)) (fl* x '(fl* a b)))
((fl* 'a (fl* 'b x)) (fl* x '(fl* a b)))))
(define-scheme-primop * #f type/integer simplify-multiply)
(define-scheme-primop un* #f type/unsigned-integer simplify-multiply)
(define-scheme-primop small* #f type/integer simplify-multiply)
(define-scheme-primop fl* #f type/float simplify-float-multiply)
(define-syntax quotient-simplifier
(syntax-rules ()
((quotient-simplifier id zero one op)
(lambda (call)
(simplify-args call 0)
((pattern-simplifier
((id x 'zero) '((lambda ()
(error "program divides by zero"))))
((id x 'one) x)
((id 'zero x) 'zero)
((id 'a 'b) '(op a b)))
call)))))
(define-scheme-primop quotient exception type/integer
(quotient-simplifier quotient 0 1 quotient))
(define-scheme-primop unquotient exception type/unsigned-integer
(quotient-simplifier unquotient 0 1 quotient))
(define-scheme-primop fl/ exception type/float
(quotient-simplifier fl/ 0.0 1.0 /))
(define-scheme-primop remainder exception type/integer)
(define-scheme-primop unremainder exception type/unsigned-integer)
(define (simplify-ashl call)
(simplify-args call 0)
((pattern-simplifier
((ashl '0 x) '0)
((ashl x '0) x)
((ashl 'a 'b) '(arithmetic-shift a b))
((ashl (ashl x 'a) 'b) (ashl x '(+ a b)))
((ashl (ashr x 'a) 'b)
(<= a b) ; condition
(ashl (bitwise-and x '(bitwise-not (- (expt 2 a) 1))) '(- b a)))
((ashl (ashr x 'a) 'b)
(>= a b) ; condition
(bitwise-and (ashr x '(- a b)) '(bitwise-not (- (expt 2 b) 1))))
((ashl (+ 'a x) 'b) (+ (ashl x 'b) '(arithmetic-shift a b))))
call))
(define (simplify-ashr call)
(simplify-args call 0)
((pattern-simplifier
((ashr '0 x) '0)
((ashr x '0) x)
((ashr 'a 'b) '(arithmetic-shift a (- b)))
((ashr (ashr x 'a) 'b) (ashr x '(+ a b))))
call))
(define (simplify-lshr call)
(simplify-args call 0)
((pattern-simplifier
((lshr '0 x) '0)
((lshr x '0) x)
((lshr 'a 'b) '(lshr a (- b)))
((lshr (lshr x 'a) 'b) (lshr x '(+ a b)))
((ashr (lshr x 'a) 'b) (lshr x '(+ a b)))) ; depends on shifts by zero
; having been constant folded
call))
(define-scheme-primop ashl #f type/integer simplify-ashl)
(define-scheme-primop ashr #f type/integer simplify-ashr)
(define-scheme-primop lshr #f type/integer simplify-lshr)
(define (simplify-bitwise-and call)
(simplify-args call 0)
(put-literal-first call)
((pattern-simplifier
((bitwise-and '0 x) '0)
((bitwise-and '-1 x) x)
((bitwise-and 'a 'b) '(bitwise-and a b)))
call))
(define (simplify-bitwise-ior call)
(simplify-args call 0)
(put-literal-first call)
((pattern-simplifier
((bitwise-ior '0 x) x)
((bitwise-ior '-1 x) '-1)
((bitwise-ior 'a 'b) '(bitwise-ior a b)))
call))
(define (simplify-bitwise-xor call)
(simplify-args call 0)
(put-literal-first call)
((pattern-simplifier
((bitwise-xor '0 x) x)
((bitwise-xor 'a 'b) '(bitwise-xor a b)))
call))
(define (simplify-bitwise-not call)
(simplify-args call 0)
((pattern-simplifier
((bitwise-not 'a) '(bitwise-not a)))
call))
(define-scheme-primop bitwise-and #f type/integer simplify-bitwise-and)
(define-scheme-primop bitwise-ior #f type/integer simplify-bitwise-ior)
(define-scheme-primop bitwise-xor #f type/integer simplify-bitwise-xor)
(define-scheme-primop bitwise-not #f type/integer simplify-bitwise-not)
(define-syntax simplify-=
(syntax-rules ()
((simplify-= = op + -)
(lambda (call)
(simplify-args call 0)
(put-literal-first call)
((pattern-simplifier
((= 'a 'b) '(op a b))
((= 'a (+ 'b c)) (= '(- a b) c)) ; will these ever be used?
((= 'a (- 'b c)) (= '(- b a) c)))
call)))))
(define-syntax simplify-<
(syntax-rules ()
((simplify-< < op + -)
(lambda (call)
(simplify-args call 0)
((pattern-simplifier
((< 'a 'b) '(op a b))
((< 'a (+ 'b c)) (< '(- a b) c)) ; will these ever be used?
((< (+ 'b c) 'a) (< c '(- a b)))
((< 'a (- 'b c)) (< c '(- b a)))
((< (- 'b c) 'a) (< '(- b a) c)))
call)))))
(define (simplify-char=? call)
(simplify-args call 0)
(put-literal-first call)
((pattern-simplifier
((char=? 'a 'b) '(char=? a b))
((char=? 'a (+ 'b c)) (char=? '(- a b) c))
((char=? 'a (- 'b c)) (char=? '(- b a) c)))
call))
(define (simplify-char<? call)
(simplify-args call 0)
((pattern-simplifier
((char<? 'a 'b) '(char<? a b))
((char<? 'a (+ 'b c)) (char<? '(- a b) c))
((char<? (+ 'b c) 'a) (char<? c '(- a b)))
((char<? 'a (- 'b c)) (char<? c '(- b a)))
((char<? (- 'b c) 'a) (char<? '(- b a) c)))
call))
(define bool-type
(lambda (call)
type/boolean))
(define-scheme-primop = #f bool-type (simplify-= = = + -))
(define-scheme-primop fl= #f bool-type (simplify-= fl= = fl+ fl-))
(define-scheme-primop un= #f bool-type (simplify-= un= = un+ un-))
(define-scheme-primop < #f bool-type (simplify-< < < + -))
(define-scheme-primop fl< #f bool-type (simplify-< fl< < fl+ fl-))
(define-scheme-primop un< #f bool-type (simplify-< un< < un+ un-))
(define-scheme-primop char=? #f bool-type simplify-char=?)
(define-scheme-primop char<? #f bool-type simplify-char<?)
(define (simplify-char->ascii call)
(simplify-args call 0)
(let ((arg (call-arg call 0)))
(if (literal-node? arg)
(let ((value (literal-value arg)))
(if (char? value)
(replace call (make-literal-node (char->ascii value) #f))
(breakpoint "char->ascii is applied to a non-character literal ~S"
value))))))
(define (simplify-ascii->char call)
(simplify-args call 0)
(let ((arg (call-arg call 0)))
(if (literal-node? arg)
(let ((value (literal-value arg)))
(if (integer? value)
(replace call (make-literal-node (ascii->char value) #f))
(breakpoint "ascii->char is applied to a non-integer literal ~S"
value))))))
(define-scheme-primop char->ascii #f type/integer simplify-char->ascii)
(define-scheme-primop ascii->char #f type/integer simplify-ascii->char)
(define-scheme-primop unsigned->integer type/integer)
(define-scheme-primop integer->unsigned type/unsigned-integer)
;(define (simplify-sign-extend call)
; (simplify-args call 0)
; (let ((value (call-arg call 0)))
; (cond ((literal-node? value)
; (set-literal-type! value type/integer)
; (replace call (detach value))))))
;
;(define-scheme-primop sign-extend #f type/integer simplify-sign-extend)
;(define-scheme-primop zero-extend #f type/integer simplify-sign-extend)
|