File: scm-arith.scm

package info (click to toggle)
scheme48 1.8%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 14,980 kB
  • ctags: 14,127
  • sloc: lisp: 76,272; ansic: 71,514; sh: 3,026; makefile: 637
file content (320 lines) | stat: -rw-r--r-- 9,477 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
; Copyright (c) 1993-2008 by Richard Kelsey.  See file COPYING.


; Arithmetic inference rules

(define (arith-op-rule args node depth return?)
  (for-each (lambda (arg)
	      (unify! (infer-type arg depth) type/integer node))
	    args)
  type/integer)

(define (arith-float-op-rule args node depth return?)
  (for-each (lambda (arg)
	      (unify! (infer-type arg depth) type/float node))
	    args)
  type/float)

(define (arith-unsigned-integer-op-rule args node depth return?)
  (for-each (lambda (arg)
	      (unify! (infer-type arg depth) type/unsigned-integer node))
	    args)
  type/unsigned-integer)

(define (arith-comparison-rule args node depth return?)
  (arith-op-rule args node depth return?)
  type/boolean)

(define (float-comparison-rule args node depth return?)
  (arith-float-op-rule args node depth return?)
  type/boolean)

(define (unsigned-integer-comparison-rule args node depth return?)
  (arith-unsigned-integer-op-rule args node depth return?)
  type/boolean)

(define (integer-binop-rule args node depth return?)
  (check-arg-type args 0 type/integer depth node)
  (check-arg-type args 1 type/integer depth node)
  type/integer)

(define (float-binop-rule args node depth return?)
  (check-arg-type args 0 type/float depth node)
  (check-arg-type args 1 type/float depth node)
  type/float)

(define (unsigned-integer-binop-rule args node depth return?)
  (check-arg-type args 0 type/unsigned-integer depth node)
  (check-arg-type args 1 type/unsigned-integer depth node)
  type/unsigned-integer)

(define (integer-monop-rule args node depth return?)
  (check-arg-type args 0 type/integer depth node)
  type/integer)

(define (integer-comparison-rule args node depth return?)
  (check-arg-type args 0 type/integer depth node)
  type/boolean)

;----------------------------------------------------------------
; Arithmetic

(define (nonnegative-integer? x)
  (and (integer? x)
       (not (negative? x))))

(define-complex-primitive (+ . integer?) +
  arith-op-rule
  (lambda (x y) (+ x y))
  (lambda (args type)
    (if (null? args)
	(make-literal-node 0 type/integer)
	(n-ary->binary args
		       (make-literal-node (get-prescheme-primop '+))
		       type))))

(define-complex-primitive (fl+ . real?) +
  arith-float-op-rule
  (lambda (x y) (fl+ x y))
  (lambda (args type)
    (if (null? args)
	(make-literal-node 0.0 type/float)
	(n-ary->binary args
		       (make-literal-node (get-prescheme-primop 'fl+))
		       type))))

(define-complex-primitive (un+ . nonnegative-integer?) +
  arith-unsigned-integer-op-rule
  (lambda (x y) (un+ x y))
  (lambda (args type)
    (if (null? args)
	(make-literal-node 0 type/unsigned-integer)
	(n-ary->binary args
		       (make-literal-node (get-prescheme-primop 'un+))
		       type))))

(define-complex-primitive (* . integer?) *
  arith-op-rule
  (lambda (x y) (* x y))
  (lambda (args type)
    (if (null? args)
	(make-literal-node 1)
	(n-ary->binary args
		       (make-literal-node (get-prescheme-primop '*))
		       type))))

(define-complex-primitive (fl* . real?) *
  arith-float-op-rule
  (lambda (x y) (fl* x y))
  (lambda (args type)
    (if (null? args)
	(make-literal-node 1.0)
	(n-ary->binary args
		       (make-literal-node (get-prescheme-primop 'fl*))
		       type))))

(define-complex-primitive (un* . nonnegative-integer?) *
  arith-unsigned-integer-op-rule
  (lambda (x y) (un* x y))
  (lambda (args type)
    (if (null? args)
	(make-literal-node 1)
	(n-ary->binary args
		       (make-literal-node (get-prescheme-primop 'un*))
		       type))))

(define (subtract-action name)
  (lambda args
    (if (or (null? (cdr args))
	    (null? (cddr args)))
	(apply - args)
	(user-error "error while evaluating: type error ~A" (cons name args)))))

(define (subtract-checker type name)
  (lambda (args node depth return)
    (case (length args)
      ((1)
       (check-arg-type args 0 type depth node)
       type)
      ((2)
       (check-arg-type args 0 type depth node)
       (check-arg-type args 1 type depth node)
       type)
      (else
       (user-error "wrong number of arguments to ~S in ~S"
		   name
		   (schemify node))))))

(define (subtract-maker name zero)
  (lambda (args type)
    (let ((primop (get-prescheme-primop name)))
      (if (null? (cdr args))
	  (make-primop-call-node primop
				 (list (make-literal-node zero) (car args))
				 type)
	  (make-primop-call-node primop args type)))))

(define-complex-primitive (- integer? . integer?)
  (subtract-action '-)
  (subtract-checker type/integer '-)
  (lambda (x y) (- x y))
  (subtract-maker '- 0))

(define-complex-primitive (fl- real? . real?)
  (subtract-action '-)
  (subtract-checker type/float 'fl-)
  (lambda (x y) (fl- x y))
  (subtract-maker 'fl- 0.0))

(define-complex-primitive (un- nonnegative-integer? . nonnegative-integer?)
  (subtract-action '-)
  (subtract-checker type/unsigned-integer 'fl-)
  (lambda (x y) (un- x y))
  (subtract-maker 'un- 0))

(define (n-ary->binary args proc type)
  (let loop ((args args))
    (if (null? (cdr args))
	(car args)
	(loop (cons (make-call-node proc
				    (list (car args) (cadr args))
				    type)
		    (cddr args))))))

(define-syntax define-binary-primitive
  (syntax-rules ()
    ((define-binary-primitive id op predicate type-reconstruct)
     (define-complex-primitive (id predicate predicate) op
       type-reconstruct
       (lambda (x y) (id x y))
       (lambda (args type)
	 (make-primop-call-node (get-prescheme-primop 'id) args type))))))

(define-binary-primitive =   = integer?             arith-comparison-rule)
(define-binary-primitive <   < integer?             arith-comparison-rule)
(define-binary-primitive fl= = real?                float-comparison-rule)
(define-binary-primitive fl< < real?                float-comparison-rule)
(define-binary-primitive un= = nonnegative-integer? unsigned-integer-comparison-rule)
(define-binary-primitive un< < nonnegative-integer? unsigned-integer-comparison-rule)

(define-semi-primitive (>  integer? integer?) >
  arith-comparison-rule
  (lambda (x y) (< y x)))

(define-semi-primitive (<= integer? integer?) <=
  arith-comparison-rule
  (lambda (x y) (not (< y x))))

(define-semi-primitive (>= integer? integer?) >=
  arith-comparison-rule
  (lambda (x y) (not (< x y))))

(define-semi-primitive (fl> real? real?) >
  float-comparison-rule
  (lambda (x y) (fl< y x)))

(define-semi-primitive (fl<= real? real?) <=
  float-comparison-rule
  (lambda (x y) (not (fl< y x))))

(define-semi-primitive (fl>= real? real?) >=
  float-comparison-rule
  (lambda (x y) (not (fl< x y))))

(define-semi-primitive (un> nonnegative-integer? nonnegative-integer?) >
  unsigned-integer-comparison-rule
  (lambda (x y) (un< y x)))

(define-semi-primitive (un<= nonnegative-integer? nonnegative-integer?) <=
  unsigned-integer-comparison-rule
  (lambda (x y) (not (un< y x))))

(define-semi-primitive (un>= nonnegative-integer? nonnegative-integer?) >=
  unsigned-integer-comparison-rule
  (lambda (x y) (not (un< x y))))

(define-binary-primitive quotient    quotient  integer?             integer-binop-rule)
(define-binary-primitive unquotient  quotient  nonnegative-integer? unsigned-integer-binop-rule)
(define-binary-primitive fl/         /         real?                float-binop-rule)
(define-binary-primitive remainder   remainder integer?             integer-binop-rule)
(define-binary-primitive unremainder remainder nonnegative-integer? integer-binop-rule)
(define-binary-primitive modulo      modulo    integer?             integer-binop-rule)

(define-primitive bitwise-and
  ((integer? type/integer) (integer? type/integer))
  type/integer)

(define-primitive bitwise-ior
  ((integer? type/integer) (integer? type/integer))
  type/integer)

(define-primitive bitwise-xor
  ((integer? type/integer) (integer? type/integer))
  type/integer)

(define-primitive bitwise-not
  ((integer? type/integer))
  type/integer)

(define-primitive shift-left
  ((integer? type/integer) (integer? type/integer))
  type/integer
  ashl)

(define-primitive logical-shift-right
  ((integer? type/integer) (integer? type/integer))
  type/integer
  lshr)

(define-primitive arithmetic-shift-right
  ((integer? type/integer) (integer? type/integer))
  type/integer
  ashr)

(define-semi-primitive (abs integer?) abs
  arith-op-rule
  (lambda (n) (if (< n 0) (- 0 n) n)))

(define-semi-primitive (zero? integer?) zero?
  arith-comparison-rule
  (lambda (n) (= n 0)))

(define-semi-primitive (positive? integer?) positive?
  arith-comparison-rule
  (lambda (n) (< 0 n)))

(define-semi-primitive (negative? integer?) negative?
  arith-comparison-rule
  (lambda (n) (< n 0)))

(define-semi-primitive (even? integer?) even?
  integer-comparison-rule
  (lambda (n) (= 0 (remainder n 2))))

(define-semi-primitive (odd? integer?) odd?
  integer-comparison-rule
  (lambda (n) (not (even? n))))
  
(define-semi-primitive (max integer? . integer?) max
  arith-op-rule
  (lambda (x y)
    (if (< x y) y x)))
  
(define-semi-primitive (min integer? . integer?) min
  arith-op-rule
  (lambda (x y)
    (if (< x y) x y)))

(define-semi-primitive (expt integer? positive-integer?) expt
  arith-op-rule
  (lambda (x y)
    (do ((r x (* r x))
	 (y y (- y 1)))
	((<= y 0)
	 r))))

(define (unsigned->integer x) x)
(define (integer->unsigned x) x)

(define-primitive unsigned->integer ((nonnegative-integer? type/unsigned-integer)) type/integer)
(define-primitive integer->unsigned ((integer? type/integer)) type/unsigned-integer)