1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
; Copyright (c) 1993-2008 by Richard Kelsey. See file COPYING.
; Arithmetic inference rules
(define (arith-op-rule args node depth return?)
(for-each (lambda (arg)
(unify! (infer-type arg depth) type/integer node))
args)
type/integer)
(define (arith-float-op-rule args node depth return?)
(for-each (lambda (arg)
(unify! (infer-type arg depth) type/float node))
args)
type/float)
(define (arith-unsigned-integer-op-rule args node depth return?)
(for-each (lambda (arg)
(unify! (infer-type arg depth) type/unsigned-integer node))
args)
type/unsigned-integer)
(define (arith-comparison-rule args node depth return?)
(arith-op-rule args node depth return?)
type/boolean)
(define (float-comparison-rule args node depth return?)
(arith-float-op-rule args node depth return?)
type/boolean)
(define (unsigned-integer-comparison-rule args node depth return?)
(arith-unsigned-integer-op-rule args node depth return?)
type/boolean)
(define (integer-binop-rule args node depth return?)
(check-arg-type args 0 type/integer depth node)
(check-arg-type args 1 type/integer depth node)
type/integer)
(define (float-binop-rule args node depth return?)
(check-arg-type args 0 type/float depth node)
(check-arg-type args 1 type/float depth node)
type/float)
(define (unsigned-integer-binop-rule args node depth return?)
(check-arg-type args 0 type/unsigned-integer depth node)
(check-arg-type args 1 type/unsigned-integer depth node)
type/unsigned-integer)
(define (integer-monop-rule args node depth return?)
(check-arg-type args 0 type/integer depth node)
type/integer)
(define (integer-comparison-rule args node depth return?)
(check-arg-type args 0 type/integer depth node)
type/boolean)
;----------------------------------------------------------------
; Arithmetic
(define (nonnegative-integer? x)
(and (integer? x)
(not (negative? x))))
(define-complex-primitive (+ . integer?) +
arith-op-rule
(lambda (x y) (+ x y))
(lambda (args type)
(if (null? args)
(make-literal-node 0 type/integer)
(n-ary->binary args
(make-literal-node (get-prescheme-primop '+))
type))))
(define-complex-primitive (fl+ . real?) +
arith-float-op-rule
(lambda (x y) (fl+ x y))
(lambda (args type)
(if (null? args)
(make-literal-node 0.0 type/float)
(n-ary->binary args
(make-literal-node (get-prescheme-primop 'fl+))
type))))
(define-complex-primitive (un+ . nonnegative-integer?) +
arith-unsigned-integer-op-rule
(lambda (x y) (un+ x y))
(lambda (args type)
(if (null? args)
(make-literal-node 0 type/unsigned-integer)
(n-ary->binary args
(make-literal-node (get-prescheme-primop 'un+))
type))))
(define-complex-primitive (* . integer?) *
arith-op-rule
(lambda (x y) (* x y))
(lambda (args type)
(if (null? args)
(make-literal-node 1)
(n-ary->binary args
(make-literal-node (get-prescheme-primop '*))
type))))
(define-complex-primitive (fl* . real?) *
arith-float-op-rule
(lambda (x y) (fl* x y))
(lambda (args type)
(if (null? args)
(make-literal-node 1.0)
(n-ary->binary args
(make-literal-node (get-prescheme-primop 'fl*))
type))))
(define-complex-primitive (un* . nonnegative-integer?) *
arith-unsigned-integer-op-rule
(lambda (x y) (un* x y))
(lambda (args type)
(if (null? args)
(make-literal-node 1)
(n-ary->binary args
(make-literal-node (get-prescheme-primop 'un*))
type))))
(define (subtract-action name)
(lambda args
(if (or (null? (cdr args))
(null? (cddr args)))
(apply - args)
(user-error "error while evaluating: type error ~A" (cons name args)))))
(define (subtract-checker type name)
(lambda (args node depth return)
(case (length args)
((1)
(check-arg-type args 0 type depth node)
type)
((2)
(check-arg-type args 0 type depth node)
(check-arg-type args 1 type depth node)
type)
(else
(user-error "wrong number of arguments to ~S in ~S"
name
(schemify node))))))
(define (subtract-maker name zero)
(lambda (args type)
(let ((primop (get-prescheme-primop name)))
(if (null? (cdr args))
(make-primop-call-node primop
(list (make-literal-node zero) (car args))
type)
(make-primop-call-node primop args type)))))
(define-complex-primitive (- integer? . integer?)
(subtract-action '-)
(subtract-checker type/integer '-)
(lambda (x y) (- x y))
(subtract-maker '- 0))
(define-complex-primitive (fl- real? . real?)
(subtract-action '-)
(subtract-checker type/float 'fl-)
(lambda (x y) (fl- x y))
(subtract-maker 'fl- 0.0))
(define-complex-primitive (un- nonnegative-integer? . nonnegative-integer?)
(subtract-action '-)
(subtract-checker type/unsigned-integer 'fl-)
(lambda (x y) (un- x y))
(subtract-maker 'un- 0))
(define (n-ary->binary args proc type)
(let loop ((args args))
(if (null? (cdr args))
(car args)
(loop (cons (make-call-node proc
(list (car args) (cadr args))
type)
(cddr args))))))
(define-syntax define-binary-primitive
(syntax-rules ()
((define-binary-primitive id op predicate type-reconstruct)
(define-complex-primitive (id predicate predicate) op
type-reconstruct
(lambda (x y) (id x y))
(lambda (args type)
(make-primop-call-node (get-prescheme-primop 'id) args type))))))
(define-binary-primitive = = integer? arith-comparison-rule)
(define-binary-primitive < < integer? arith-comparison-rule)
(define-binary-primitive fl= = real? float-comparison-rule)
(define-binary-primitive fl< < real? float-comparison-rule)
(define-binary-primitive un= = nonnegative-integer? unsigned-integer-comparison-rule)
(define-binary-primitive un< < nonnegative-integer? unsigned-integer-comparison-rule)
(define-semi-primitive (> integer? integer?) >
arith-comparison-rule
(lambda (x y) (< y x)))
(define-semi-primitive (<= integer? integer?) <=
arith-comparison-rule
(lambda (x y) (not (< y x))))
(define-semi-primitive (>= integer? integer?) >=
arith-comparison-rule
(lambda (x y) (not (< x y))))
(define-semi-primitive (fl> real? real?) >
float-comparison-rule
(lambda (x y) (fl< y x)))
(define-semi-primitive (fl<= real? real?) <=
float-comparison-rule
(lambda (x y) (not (fl< y x))))
(define-semi-primitive (fl>= real? real?) >=
float-comparison-rule
(lambda (x y) (not (fl< x y))))
(define-semi-primitive (un> nonnegative-integer? nonnegative-integer?) >
unsigned-integer-comparison-rule
(lambda (x y) (un< y x)))
(define-semi-primitive (un<= nonnegative-integer? nonnegative-integer?) <=
unsigned-integer-comparison-rule
(lambda (x y) (not (un< y x))))
(define-semi-primitive (un>= nonnegative-integer? nonnegative-integer?) >=
unsigned-integer-comparison-rule
(lambda (x y) (not (un< x y))))
(define-binary-primitive quotient quotient integer? integer-binop-rule)
(define-binary-primitive unquotient quotient nonnegative-integer? unsigned-integer-binop-rule)
(define-binary-primitive fl/ / real? float-binop-rule)
(define-binary-primitive remainder remainder integer? integer-binop-rule)
(define-binary-primitive unremainder remainder nonnegative-integer? integer-binop-rule)
(define-binary-primitive modulo modulo integer? integer-binop-rule)
(define-primitive bitwise-and
((integer? type/integer) (integer? type/integer))
type/integer)
(define-primitive bitwise-ior
((integer? type/integer) (integer? type/integer))
type/integer)
(define-primitive bitwise-xor
((integer? type/integer) (integer? type/integer))
type/integer)
(define-primitive bitwise-not
((integer? type/integer))
type/integer)
(define-primitive shift-left
((integer? type/integer) (integer? type/integer))
type/integer
ashl)
(define-primitive logical-shift-right
((integer? type/integer) (integer? type/integer))
type/integer
lshr)
(define-primitive arithmetic-shift-right
((integer? type/integer) (integer? type/integer))
type/integer
ashr)
(define-semi-primitive (abs integer?) abs
arith-op-rule
(lambda (n) (if (< n 0) (- 0 n) n)))
(define-semi-primitive (zero? integer?) zero?
arith-comparison-rule
(lambda (n) (= n 0)))
(define-semi-primitive (positive? integer?) positive?
arith-comparison-rule
(lambda (n) (< 0 n)))
(define-semi-primitive (negative? integer?) negative?
arith-comparison-rule
(lambda (n) (< n 0)))
(define-semi-primitive (even? integer?) even?
integer-comparison-rule
(lambda (n) (= 0 (remainder n 2))))
(define-semi-primitive (odd? integer?) odd?
integer-comparison-rule
(lambda (n) (not (even? n))))
(define-semi-primitive (max integer? . integer?) max
arith-op-rule
(lambda (x y)
(if (< x y) y x)))
(define-semi-primitive (min integer? . integer?) min
arith-op-rule
(lambda (x y)
(if (< x y) x y)))
(define-semi-primitive (expt integer? positive-integer?) expt
arith-op-rule
(lambda (x y)
(do ((r x (* r x))
(y y (- y 1)))
((<= y 0)
r))))
(define (unsigned->integer x) x)
(define (integer->unsigned x) x)
(define-primitive unsigned->integer ((nonnegative-integer? type/unsigned-integer)) type/integer)
(define-primitive integer->unsigned ((integer? type/integer)) type/unsigned-integer)
|