1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
; Copyright (c) 1993-2008 by Richard Kelsey. See file COPYING.
; Convert a byte-code-compiler node into a cps node.
; Entry point.
(define (x->cps node name)
(receive (value first-call last-lambda)
(cps node)
(if first-call
(bug "(X->CPS ~S) got a non-value" node))
(maybe-add-name! value name)
value))
;----------------------------------------------------------------
; (CPS <node>)
; -> <value> <first-call> <last-lambda>
; <value> is the CPSed value of <node>. If <node> contains no non-trivial
; calls, <first-call> and <last-lambda> are both #f. Otherwise they are
; the first of the non-trivial calls and the continuation of the last.
(define (cps node)
(receive (value first-call last-lambda)
(real-cps node)
(let ((value (cond ((not (list? value))
value)
((or (null? value)
(not (null? (cdr value))))
(bug "value expression did not return one value ~S"
(schemify node)))
(else
(car value)))))
(values value first-call last-lambda))))
; Same as above except that <value> is a list of values.
(define (values-cps node)
(receive (value first-call last-lambda)
(real-cps node)
(values (if (list? value)
value
(list value))
first-call
last-lambda)))
(define (real-cps node)
((operator-table-ref cps-converters
(node-operator-id node))
node))
(define cps-converters
(make-operator-table
(lambda (node id)
(error "no cps-converter for node ~S" node))))
(define (define-cps-converter name proc)
(operator-define! cps-converters name #f proc))
;----------------------------------------------------------------
; (TAIL-CPS <node> <continuation-variable>)
; -> <first-call>
(define (tail-cps node cont-var)
((operator-table-ref tail-cps-converters (node-operator-id node))
node
cont-var))
(define tail-cps-converters
(make-operator-table
(lambda (node cont-var)
(error "no tail-cps-converter for node ~S" node))))
(define (define-tail-cps-converter name proc)
(operator-define! tail-cps-converters name #f proc))
; Use PROC in the CPS table and give it a wrapper that makes a return for use
; in the TAIL-CPS table.
(define (define-value-cps-converter name proc)
(operator-define! cps-converters name #f
(lambda (node)
(values (proc node) #f #f)))
(operator-define! tail-cps-converters name #f
(lambda (node cont-var)
(make-return cont-var (proc node)))))
; El Hacko Grande: we use the name of the CONT-VAR to determine whether
; it is a return or a join point.
(define (join? var)
(case (variable-name var)
((c) #f)
((j) #t)
(else
(bug "funny continuation variable name ~S" var))))
(define (make-return cont-var value)
(really-make-return cont-var (list value)))
(define (make-multiple-value-return cont-var values)
(really-make-return cont-var values))
(define (really-make-return cont-var values)
(let ((return (make-call-node
(get-primop (if (join? cont-var)
(enum primop jump)
(enum primop unknown-return)))
(+ 1 (length values))
0)))
(attach-call-args return (cons (make-reference-node cont-var) values))
return))
;----------------------------------------------------------------
; Constants are easy.
(define-value-cps-converter 'literal
(lambda (node)
(cps-literal (node-form node) node)))
(define-value-cps-converter 'quote
(lambda (node)
(cps-literal (cadr (node-form node)) node)))
(define (cps-literal value node)
(make-literal-node value (node-type node)))
(define-value-cps-converter 'unspecific
(lambda (node)
(make-unspecific)))
(define (make-unspecific)
(make-call-node (get-prescheme-primop 'unspecific) 0 0))
; Used for primitives in non-call position. The CDR of the form is a
; variable that will be bound to the primitive's closed-compiled value.
(define-value-cps-converter 'primitive
(lambda (node)
(make-reference-node (cdr (node-form node)))))
;----------------------------------------------------------------
(define-value-cps-converter 'lambda
(lambda (node)
(let ((form (node-form node))
(cont-var (make-variable 'c (lambda-node-return-type node)))
(vars (map (lambda (name)
(let ((var (make-variable (name-node->symbol name)
(node-type name))))
(node-set! name 'variable var)
var))
(cadr (node-form node)))))
(let ((lnode (make-lambda-node 'p 'proc (cons cont-var vars))))
(attach-body lnode (tail-cps (caddr form) cont-var))
lnode))))
;----------------------------------------------------------------
; References and SET!
(define-value-cps-converter 'name
(lambda (node)
(cond ((node-ref node 'variable)
=> make-reference-node) ; eventually have to check for SET!'s
((node-ref node 'binding)
=> (lambda (binding)
(let ((var (binding-place binding)))
(cond ((not (variable? var))
(bug "binding for ~S has funny place ~S" node var))
((variable-set!? var)
(make-global-ref var))
(else
(make-reference-node var))))))
(else
(bug "name node ~S has neither variable nor binding" node)))))
(define (make-global-ref var)
((structure-ref node let-nodes)
((call (global-ref 0 (* var))))
call))
; Stolen from form.scm as an expedient. This needs to be moved to somewhere
; that both FORMS and TO-CPS can see it.
(define (variable-set!? var)
(memq 'set! (variable-flags var)))
(define-cps-converter 'set!
(lambda (node)
(receive (first-call last-lambda)
(make-global-set! (node-form node))
(values (make-unspecific) first-call last-lambda))))
(define-tail-cps-converter 'set!
(lambda (node cont-var)
(receive (first-call last-lambda)
(make-global-set! (node-form node))
(attach-body last-lambda (make-return cont-var (make-unspecific)))
first-call)))
(define (make-global-set! form)
(let ((name (cadr form))
(value (caddr form)))
(receive (value first-call last-lambda)
(cps value)
(maybe-add-name! value name)
(let ((cont (make-lambda-node 'c 'cont '()))
(var (name-node->variable name)))
((structure-ref node let-nodes)
((call (global-set! 1 cont (* var) value)))
(values (splice!->first first-call last-lambda call)
cont))))))
(define (name-node->variable name-node)
(let ((binding (node-ref name-node 'binding)))
(if (and binding
(variable? (binding-place binding)))
(binding-place binding)
(bug "name node ~S has no variable" name-node))))
;----------------------------------------------------------------
; CALL & GOTO
(define-cps-converter 'call
(lambda (node)
(let ((exp (node-form node)))
(convert-call (car exp) (cdr exp) node))))
; Treat non-tail-recursive GOTO's as normal calls.
(define-cps-converter 'goto
(lambda (node)
(let ((exp (node-form node)))
(user-warning "Ignoring non-tail-recursive GOTO: ~S" (schemify node))
(convert-call (cadr exp) (cddr exp) node))))
; Dispatch on the procedure. Do something special with lambdas, primitives,
; primops (in literal nodes). Everything else is turned into an unknown call.
; Calls to primitives are expanded and then CPS'ed.
(define (convert-call proc args node)
(cond ((lambda-node? proc)
(convert-let (node-form proc) args node))
((primitive-node? proc)
(values-cps (expand-primitive-call proc args node)))
((and (literal-node? proc)
(primop? (node-form proc)))
(convert-primop-call (node-form proc) args (node-type node)))
(else
(convert-primop-call (get-primop (enum primop unknown-call))
(cons proc ; add protocol argument
(cons (make-literal normal-protocol)
args))
(node-type node)))))
; Same again, except that for unknown tail-recursive calls we use different
; protocols for CALL and GOTO.
(define-tail-cps-converter 'call
(lambda (node cont-var)
(if (join? cont-var)
(convert-and-add-jump node cont-var)
(let ((exp (node-form node)))
(tail-convert-call (car exp) (cdr exp) node cont-var normal-protocol)))))
(define-tail-cps-converter 'goto
(lambda (node cont-var)
(if (join? cont-var)
(convert-and-add-jump node cont-var)
(let ((exp (node-form node)))
(tail-convert-call (cadr exp) (cddr exp) node cont-var goto-protocol)))))
(define (convert-and-add-jump node join-var)
(receive (values first-call last-lambda)
(values-cps node)
(let ((jump (make-multiple-value-return join-var values)))
(cond (first-call
(attach-body last-lambda jump)
first-call)
(else
jump)))))
(define (tail-convert-call proc args node cont-var protocol)
(cond ((lambda-node? proc)
(convert-tail-let (node-form proc) args node cont-var))
((primitive-node? proc)
(tail-cps (expand-primitive-call proc args node)
cont-var))
((and (literal-node? proc)
(primop? (node-form proc)))
(convert-primop-tail-call (node-form proc) args cont-var))
(else
(convert-unknown-tail-call (cons proc args) cont-var protocol))))
; Every primitive has its own expander.
(define (expand-primitive-call proc args node)
((primitive-expander (node-form proc)) args (node-type node)))
(define lambda-node? (node-predicate 'lambda))
(define primitive-node? (node-predicate 'primitive))
(define literal-node? (node-predicate 'literal))
(define literal-op (get-operator 'literal))
(define (make-literal value)
(make-node literal-op value))
;----------------------------------------------------------------
; LET (= a call whose procedure is a LAMBDA)
; REALLY-CONVERT-LET does all the work. These convert the body of the LET
; using either CPS or TAIL-CPS and connect everything up.
(define (convert-let proc args node)
(receive (lnode first-call)
(really-convert-let proc args node)
(receive (vals body-first-call body-last-lambda)
(values-cps (caddr proc))
(values vals
first-call
(splice!->last lnode body-first-call body-last-lambda)))))
(define (convert-tail-let proc args node cont-var)
(receive (lnode first-call)
(really-convert-let proc args node)
(attach-body lnode (tail-cps (caddr proc) cont-var))
first-call))
; Make the call to the LET primop and build the lambda node for the procedure.
(define (really-convert-let proc args node)
(receive (call first-call last-lambda)
(cps-call (get-primop (enum primop let)) 1 1 args cps)
(let ((vars (map (lambda (name)
(let ((var (make-variable (name-node->symbol name)
(node-type name))))
(node-set! name 'variable var)
var))
(cadr proc))))
(do ((names (cadr proc) (cdr names))
(index 1 (+ index 1)))
((null? names))
(maybe-add-argument-name! call index (node-form (car names))))
(let ((lnode (make-lambda-node #f 'cont vars)))
(attach call 0 lnode)
(values lnode (splice!->first first-call last-lambda call))))))
; Primitive calls
; Use CPS-CALL to do the work and then make a continuation if the primop is
; not trivial.
(define (convert-primop-call primop args type)
(let ((trivial? (primop-trivial? primop)))
(receive (call first-call last-lambda)
(cps-call primop (if trivial? 0 1) (if trivial? 0 1) args cps)
(if (not trivial?)
(add-continuation call first-call last-lambda type)
(values call first-call last-lambda)))))
(define (add-continuation call first-call last-lambda type)
(let* ((vars (map (lambda (type)
(make-variable 'v type))
(if (tuple-type? type)
(tuple-type-types type)
(list type))))
(cont (make-lambda-node 'c 'cont vars)))
(attach call 0 cont)
(values (if (tuple-type? type)
(map make-reference-node vars)
(make-reference-node (car vars)))
(splice!->first first-call last-lambda call)
cont)))
; Call CONVERT-PRIMOP-CALL and then make a return.
(define (convert-primop-tail-call primop args cont-var)
(receive (value first-call last-lambda)
(convert-primop-call primop args (variable-type cont-var))
(splice!->first first-call
last-lambda
(if (list? value)
(make-multiple-value-return cont-var value)
(make-return cont-var value)))))
; Another front for CPS-CALL, passing it the UNKNOWN-TAIL-CALL primop and
; its arguments, which are the procedure being called, the protocol, and
; the actual arguments.
(define (convert-unknown-tail-call args cont-var protocol)
(receive (call first-call last-lambda)
(cps-call (get-primop (enum primop unknown-tail-call)) 0 1
(cons (car args)
(cons (make-literal protocol) (cdr args)))
cps)
(attach call 0 (make-reference-node cont-var))
(splice!->first first-call last-lambda call)))
;----------------------------------------------------------------
; BEGIN
; These are fronts for CPS-SEQUENCE.
(define-cps-converter 'begin
(lambda (node)
(receive (last-node real-first-call last-lambda)
(cps-sequence (cdr (node-form node)) values-cps)
(if (not real-first-call)
(cps last-node)
(receive (vals first-call real-last-lambda)
(values-cps last-node)
(values vals
real-first-call
(splice!->last last-lambda first-call real-last-lambda)))))))
(define-tail-cps-converter 'begin
(lambda (node cont-var)
(receive (last-node first-call last-lambda)
(cps-sequence (cdr (node-form node)) values-cps)
(splice!->first first-call last-lambda (tail-cps last-node cont-var)))))
;----------------------------------------------------------------
;
; (IF <a> <b> <c>)
; =>
; (LET ((J (LAMBDA (V) [rest-goes-here])))
; (TEST (LAMBDA () [tail-cps <b> J])
; (LAMBDA () [tail-cps <c> J])
; <a>))
(define-cps-converter 'if
(lambda (node)
(let ((exp (node-form node))
(join-var (make-variable 'j type/unknown))
(res-vars (make-variables (node-type node))))
(receive (call first-call last-lambda)
(convert-if exp join-var)
(let ((let-lambda (make-lambda-node 'c 'cont (list join-var)))
(let-call (make-call-node (get-primop (enum primop let)) 2 1))
(join-lambda (make-lambda-node 'j 'jump res-vars)))
(attach let-call 0 let-lambda)
(attach let-call 1 join-lambda)
(attach-body let-lambda call)
(values (map make-reference-node res-vars)
(splice!->first first-call last-lambda let-call )
join-lambda))))))
(define (make-variables type)
(map (lambda (type)
(make-variable 'v type))
(if (tuple-type? type)
(tuple-type-types type)
(list type))))
; Tail-recursive IFs do not require a join point.
(define-tail-cps-converter 'if
(lambda (node cont-var)
(let ((exp (node-form node)))
(receive (call first-call last-lambda)
(convert-if exp cont-var)
(splice!->first first-call last-lambda call)))))
; Actually build the two-continuation call to the TEST primop.
(define (convert-if exp cont-var)
(receive (call first-call last-lambda)
(cps-call (get-prescheme-primop 'test) 2 2 (list (cadr exp)) cps)
(let ((true-cont (make-lambda-node 'c 'cont '()))
(true-call (tail-cps (caddr exp) cont-var))
(false-cont (make-lambda-node 'c 'cont '()))
(false-call (tail-cps (cadddr exp) cont-var)))
(attach-body true-cont true-call)
(attach-body false-cont false-call)
(attach call 0 true-cont)
(attach call 1 false-cont)
(values call first-call last-lambda))))
;----------------------------------------------------------------
(define-cps-converter 'values
(lambda (node)
(let ((args (cdr (node-form node))))
(receive (call first-call last-lambda)
(cps-call (get-prescheme-primop 'unspecific) 0 0 args cps)
(let ((vals (vector->list (call-args call))))
(map detach vals)
(values vals first-call last-lambda))))))
(define-tail-cps-converter 'values
(lambda (node cont-var)
(let ((args (cdr (node-form node))))
(receive (call first-call last-lambda)
(cps-call (get-primop (enum primop unknown-return)) 0 1 args cps)
(attach call 0 (make-reference-node cont-var))
(splice!->first first-call last-lambda call)))))
(define-cps-converter 'call-with-values
(lambda (node)
(convert-call-with-values node #f)))
(define-tail-cps-converter 'call-with-values
(lambda (node cont-var)
(convert-call-with-values node cont-var)))
; Consumer is known to be a lambda node.
(define (convert-call-with-values node maybe-cont-var)
(receive (vals first-call last-lambda)
(values-cps (cadr (node-form node)))
(let ((consumer (x->cps (caddr (node-form node)) #f))
(call (make-call-node (get-primop (if maybe-cont-var
(enum primop tail-call)
(enum primop call)))
(+ 2 (length vals))
(if maybe-cont-var 0 1))))
(attach-call-args call `(#f ,consumer . ,vals))
(cond (maybe-cont-var
(attach call 0 (make-reference-node maybe-cont-var))
(splice!->first first-call last-lambda call))
(else
(add-continuation call first-call last-lambda (node-type node)))))))
;----------------------------------------------------------------
; LETRECs have been analyzed and restructured by FLATTEN, so we know that
; the values are all lambdas.
(define-cps-converter 'letrec
(lambda (node)
(let ((form (node-form node)))
(receive (first-call last-lambda)
(convert-letrec form)
(receive (vals body-first-call body-last-lambda)
(values-cps (caddr form))
(values vals
first-call
(splice!->last last-lambda
body-first-call
body-last-lambda)))))))
(define-tail-cps-converter 'letrec
(lambda (node cont-var)
(let ((form (node-form node)))
(receive (first-call last-lambda)
(convert-letrec form)
(attach-body last-lambda (tail-cps (caddr form) cont-var))
first-call))))
(define (convert-letrec form)
(let ((vars (map (lambda (l)
(let ((var (make-variable (name-node->symbol (car l))
(node-type (car l)))))
(node-set! (car l) 'variable var)
var))
(cadr form)))
(vals (map (lambda (l)
(receive (value first-call last-lambda)
(cps (cadr l))
value))
(cadr form)))
(cont (make-lambda-node 'c 'cont '())))
((structure-ref node let-nodes)
((top (letrec1 1 l1))
(l1 ((x #f) . vars) call2)
(call2 (letrec2 1 cont (* x) . vals)))
(do ((names (cadr form) (cdr names))
(index 2 (+ index 1)))
((null? names))
(maybe-add-argument-name! call2 index (node-form (caar names))))
(values top cont))))
;----------------------------------------------------------------
; Utilities.
; Stuff is a list of alternating call and lambda nodes, with possible #Fs.
; This joins the nodes together by making the calls be the bodies of the
; lambdas (the call->lambda links are already done). The last node is
; returned.
(define (splice! stuff)
(let loop ((stuff stuff) (first #f) (last #f))
(if (null? stuff)
(values first last)
(receive (first last)
(let ((next (car stuff)))
(cond ((not next)
(values first last))
((not first)
(values next next))
(else
(if (and ((structure-ref node lambda-node?) last)
((structure-ref node call-node?) next))
(attach-body last next))
(values first next))))
(loop (cdr stuff) first last)))))
(define (splice!->first . stuff)
(receive (first last)
(splice! stuff)
first))
(define (splice!->last . stuff)
(receive (first last)
(splice! stuff)
last))
; Stuff for making CPS nodes
(define make-reference-node (structure-ref node make-reference-node))
(define make-lambda-node (structure-ref node make-lambda-node))
(define make-literal-node (structure-ref node make-literal-node))
(define make-call-node (structure-ref node make-call-node))
(define attach (structure-ref node attach))
(define detach (structure-ref node detach))
(define attach-body (structure-ref node attach-body))
(define attach-call-args (structure-ref node attach-call-args))
(define call-args (structure-ref node call-args))
; Adding names to lambda nodes for debugging help.
(define (maybe-add-argument-name! call index name)
(maybe-add-name! ((structure-ref node call-arg) call index) name))
(define (maybe-add-name! value name)
(if ((structure-ref node lambda-node?) value)
((structure-ref node set-lambda-name!) value (schemify name))))
; Getting symbols for use as variable names.
(define (name-node->symbol node)
(let loop ((name (node-form node)))
(if (generated? name)
(loop (generated-name name))
name)))
|