File: comp-prim.scm

package info (click to toggle)
scheme48 1.9.2-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 18,232 kB
  • sloc: lisp: 88,907; ansic: 87,519; sh: 3,224; makefile: 771
file content (982 lines) | stat: -rw-r--r-- 34,903 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
; -*- Mode: Scheme; Syntax: Scheme; Package: Scheme; -*-
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Richard Kelsey, Jonathan Rees, 
;          Martin Gasbichler, Marcus Crestani, Mike Sperber, Robert Ransom

; Compiling primitive procedures and calls to them.

; (primitive-procedure name)  =>  a procedure

(define-compilator 'primitive-procedure syntax-type
  (lambda (node depth frame cont)
    (let ((name (cadr (node-form node))))
      (deliver-value
        (sequentially
	  (stack-indirect-instruction
	    (template-offset frame depth)
	    (literal->index frame (primop-closed-template name)))
	  (instruction (enum op push))
	  (instruction (enum op false))		; no environment
	  (instruction (enum op make-stored-object) 2 (enum stob closure)))
	cont))))

(define (primop-closed-template name)
  (let ((data (primop-closed (get-primop name))))
    (receive (maybe-nargs proc)
	(if (pair? data)
	    (values (car data) (cdr data))
	    (values #f data))
      (let ((frame (make-frame #f	; no parent frame
			       name	; name of primop
			       (or maybe-nargs 0)
					; nargs (needed if template used)
			       maybe-nargs ; need template if nargs
			       #f	; no env
			       #f)))    ; no closure
	(segment->template (proc frame) frame)))))

; --------------------
; Direct primitives.

; The simplest kind of primitive has fixed arity, corresponds to some
; single VM instruction, and takes its arguments in the usual way (all
; on the stack).

(define (direct-compilator type opcode)
  (lambda (node depth frame cont)
    (let ((args (cdr (node-form node))))
      (sequentially (if (null? args)
                        empty-segment
                        (push-all-but-last args depth frame node))
                    (deliver-value (instruction opcode) cont)))))

(define (direct-closed-compilator opcode)
  (lambda (frame)
    (let ((arg-specs (vector-ref opcode-arg-specs opcode)))
      (sequentially (if (pair? arg-specs)
                        (sequentially
                         (lambda-protocol (car arg-specs) #f #f #f)
                         (instruction (enum op pop)))
                        (lambda-protocol 0 #f #f #f))
                    (instruction opcode)
                    (instruction (enum op return))))))

(define (nargs->domain nargs)
  (do ((nargs nargs (- nargs 1))
       (l '() (cons value-type l)))
      ((= nargs 0) (make-some-values-type l))))

(define (get-primop-type id arg-count)
  (or (any (lambda (foo)
	     (if (if (pair? (car foo))
		     (memq id (car foo))
		     (eq? id (car foo)))
		 (cadr foo)
		 #f))
	   primop-types)
      (procedure-type (nargs->domain arg-count)
		      value-type
		      #t)))

; Types for various primops.

(define primop-types
  `((with-continuation
     ,(proc (escape-type (proc () any-values-type #f))
	    any-arguments-type))
    (eq?
     ,(proc (value-type value-type) boolean-type))
    ((number? integer? rational? real? complex? char? eof-object? port?)
     ,(proc (value-type) boolean-type))
    (exact?
     ,(proc (number-type) boolean-type))
    (exact->inexact
     ,(proc (number-type) inexact-type))
    (inexact->exact
     ,(proc (number-type) exact-type))
    ((exp log sin cos tan asin acos sqrt)
     ,(proc (number-type) number-type))
    ((floor)
     ,(proc (real-type) integer-type))
    ((real-part imag-part angle magnitude)
     ,(proc (complex-type) real-type))
    ((numerator denominator)
     ,(proc (rational-type) integer-type))
    ((make-polar make-rectangular)
     ,(proc (real-type real-type) complex-type))
    ((quotient remainder)
     ,(proc (integer-type integer-type) integer-type))
    ((bitwise-not)
     ,(proc (exact-integer-type) exact-integer-type))
    ((arithmetic-shift)
     ,(proc (exact-integer-type exact-integer-type)
	    exact-integer-type))
    (open-channel
     ;; Can return #f
     ,(proc (string-type value-type exact-integer-type boolean-type) value-type))
    (cons
     ,(proc (value-type value-type) pair-type))
    (intern
     ,(proc (string-type) symbol-type))
    (make-weak-pointer
     ,(proc (value-type) value-type))))


; Can't do I/O until the meta-types interface exports input-port-type and
; output-port-type.

; Define all the primitives that correspond to opcodes in the obvious way.

(do ((opcode 0 (+ opcode 1)))
    ((= opcode op-count))
  (let ((arg-specs (vector-ref opcode-arg-specs opcode))
        (name (enumerand->name opcode op)))
    (cond ((memq name '(call-external-value call-external-value-2
			return-from-interrupt return
			binary-comparison-reduce2)))
          ((null? arg-specs)
           (let ((type (proc () value-type)))
             (define-compiler-primitive name type
               (direct-compilator type opcode)
               (direct-closed-compilator opcode))))
          ((not (number? (car arg-specs))))
	  ((memq name '(+ * - / = < > <= >=
			bitwise-ior bitwise-xor bitwise-and
			make-string closed-apply
			encode-char/us-ascii)))
          (else
           (let ((type (get-primop-type name (car arg-specs))))
             (define-compiler-primitive name type
               (direct-compilator type opcode)
               (direct-closed-compilator opcode)))))))

; --------------------
; Simple primitives are executed using a fixed instruction or
; instruction sequence.

(define (define-simple-primitive name type segment)
  (let ((winner? (fixed-arity-procedure-type? type)))
    (let ((nargs (if winner?
                     (procedure-type-arity type)
                     (assertion-violation 'define-simple-primitive
					  "n-ary simple primitive?!" name type))))
      (define-compiler-primitive name type
        (simple-compilator segment)
        (simple-closed-compilator nargs segment)))))

(define (simple-compilator segment)
  (lambda (node depth frame cont)
    (let ((args (cdr (node-form node))))
      (sequentially (if (null? args)
                        empty-segment
                        (push-all-but-last args depth frame node))
                    (deliver-value segment cont)))))

(define (simple-closed-compilator nargs segment)
  (lambda (frame)
    (sequentially (lambda-protocol nargs #f #f #f)
                  (if (< 0 nargs)
                      (instruction (enum op pop))
                      empty-segment)
                  segment
                  (instruction (enum op return)))))

(define (define-stob-predicate name stob-name)
  (define-simple-primitive name
    (proc (value-type) boolean-type)
    (instruction (enum op stored-object-has-type?)
                 (name->enumerand stob-name stob))))

(define-stob-predicate 'byte-vector? 'byte-vector)
(define-stob-predicate 'double? 'double)
(define-stob-predicate 'string? 'string)

; Making doubles

(let ((:double (sexp->type ':double #t)))
  (define-compiler-primitive 'make-double (proc () :double)
    (lambda (node depth frame cont)
      (deliver-value
       (instruction (enum op make-double))
	cont))
    (cons 0
	  (lambda (frame)
	    (sequentially (lambda-protocol 0 #t #f #f)
			  (instruction (enum op stack-indirect)
				       (template-offset frame 1) ; template
				       (literal->index frame 0))
			  (instruction (enum op push))
			  (instruction (enum op return)))))))

; Define primitives for record-like stored objects (e.g. pairs).

(define (define-data-struct-primitives name predicate maker . slots)
  (let* ((def-prim (lambda (name type op . stuff)
                     (define-simple-primitive name type
                       (apply instruction (cons op stuff)))))
         (type-byte (name->enumerand name stob))
         (type (sexp->type (symbol-append ': name) #t)))
    (define-stob-predicate predicate name)
    (if maker
        (def-prim maker
          (procedure-type (nargs->domain (length slots)) type #t)
          (enum op make-stored-object)
          (length slots)
          type-byte))
    (do ((i 0 (+ i 1))
         (slots slots (cdr slots)))
        ((null? slots))
      (let ((slot (car slots)))
        (if (car slot)
	    (def-prim (car slot)
	      (proc (type) value-type)
	      (enum op stored-object-ref) type-byte i))
        (if (not (null? (cdr slot)))
	    (begin
	      (if (not (eq? (cadr slot)
			    'cell-set!))
		  (def-prim (cadr slot)
		    (proc (type value-type) unspecific-type)
		    (enum op stored-object-set!) type-byte i 0))
	      (if (car slot)
		  (def-prim (symbol-append 'provisional- (car slot))
		    (proc (type) value-type)
		    (enum op stored-object-logging-ref) type-byte i))
	      (def-prim (symbol-append 'provisional- (cadr slot))
		(proc (type value-type) unspecific-type)
		(enum op stored-object-set!) type-byte i 1)))))))

(for-each (lambda (stuff)
            (apply define-data-struct-primitives stuff))
          stob-data)

; CELL-SET! is special because we want to capture names for the debugging data.
; Other than using NAMED-CONT when it can for compiling the value this is the
; same as all the other accessors.

(let ((inst (instruction (enum op stored-object-set!)
			 (enum stob cell)
			 0		; index
			 0)))		; not provisional
  (define-compiler-primitive 'cell-set!
    (proc ((sexp->type ':cell #t) value-type) unspecific-type)
    (lambda (node depth frame cont)
      (let ((args (cdr (node-form node))))
	(cond ((name-node? (car args))
	       (sequentially 
		 (push-argument node 0 depth frame)
		 (compile (cadr args)
			  (+ depth 1)
			  frame
			  (named-cont (node-form (car args))))
		 (deliver-value inst cont)))
	      (else
	       (sequentially (push-all-but-last args depth frame node)
			     (deliver-value inst cont))))))
    (simple-closed-compilator 2 inst)))

; Define primitives for vector-like stored objects.

(define (define-vector-primitives name element-type)
  (let* ((type-byte (name->enumerand name stob))
         (def-prim (lambda (name type op . more)
                     (define-simple-primitive name type
                       (apply instruction op type-byte more))))
         (type (sexp->type (symbol-append ': name) #t)))
    (define-stob-predicate (symbol-append name '?) name)
    (if (not (eq? name 'vector))  ; 2nd arg to make-vector is optional
	(def-prim (symbol-append 'make- name)
	  (proc (exact-integer-type element-type) type)
	  (enum op make-vector-object)))
    (def-prim (symbol-append name '- 'length)
      (proc (type) exact-integer-type)
      (enum op stored-object-length))
    (def-prim (symbol-append name '- 'ref)
      (proc (type exact-integer-type) element-type)
      (enum op stored-object-indexed-ref)
      0)		; do not log in the proposal
    (def-prim (symbol-append name '- 'set!)
      (proc (type exact-integer-type element-type) unspecific-type)
      (enum op stored-object-indexed-set!)
      0)))		; do not log in the proposal

(for-each (lambda (name)
            (define-vector-primitives name value-type))
          '(vector record continuation extended-number template))

(define-syntax define-more-vector-primitives
  (syntax-rules ()
    ((define-vector-primitives
       (ref ref-op)
       (set set-op)
       vector-type elt-type (more ...))
     (begin
       (define-simple-primitive 'ref
	 (proc (vector-type exact-integer-type) elt-type)
	 (instruction (enum op ref-op) more ...))
       (define-simple-primitive 'set
	 (proc (vector-type exact-integer-type elt-type) unspecific-type)
	 (instruction (enum op set-op) more ...))))))

; Vector ref and set! that use the current proposal's logs.

(define-more-vector-primitives
  (provisional-vector-ref  stored-object-indexed-ref)
  (provisional-vector-set! stored-object-indexed-set!)
  vector-type
  value-type
  ((enum stob vector) 1))
       
(define-more-vector-primitives
  (provisional-byte-vector-ref  byte-vector-logging-ref)
  (provisional-byte-vector-set! byte-vector-logging-set!)
  value-type
  exact-integer-type
  ())
       
; Checked-record-ref and friends.

(let ((record-type (sexp->type ':record #t)))
  (define-simple-primitive 'checked-record-ref
    (proc (record-type value-type exact-integer-type) value-type)
    (instruction (enum op checked-record-ref) 0))

  (define-simple-primitive 'provisional-checked-record-ref
    (proc (record-type value-type exact-integer-type) value-type)
    (instruction (enum op checked-record-ref) 1))

  (define-simple-primitive 'checked-record-set!
    (proc (record-type value-type exact-integer-type value-type)
	  unspecific-type)
    (instruction (enum op checked-record-set!) 0))

  (define-simple-primitive 'provisional-checked-record-set!
    (proc (record-type value-type exact-integer-type value-type)
	  unspecific-type)
    (instruction (enum op checked-record-set!) 1)))

(let ((copy-type (proc (value-type exact-integer-type
		        value-type exact-integer-type
			exact-integer-type)
		       unspecific-type)))
  (define-simple-primitive 'copy-bytes! copy-type
    (instruction (enum op copy-bytes!) 0))
  (define-simple-primitive 'attempt-copy-bytes! copy-type
    (instruction (enum op copy-bytes!) 1)))


; SIGNAL-CONDITION is the same as TRAP.

(define-simple-primitive 'signal-condition (proc (value-type) unspecific-type)
  (instruction (enum op trap)))

; (primitive-catch (lambda (cont) ...))

(define-compiler-primitive 'primitive-catch
  (proc ((proc (escape-type) any-values-type #f)) any-values-type)
  ;; (primitive-catch (lambda (cont) ...))
  (lambda (node depth frame cont)
    (let* ((exp (node-form node))
           (args (cdr exp)))
      (receive (before depth label after)
	  (maybe-push-continuation depth frame cont (car args))
	(depth-check! frame (+ depth 1))
	(sequentially before
	              (instruction (enum op current-cont))
		      (instruction (enum op push))
		      (compile (car args)
			       (+ depth 1)
			       frame
			       (fall-through-cont node 1))
		      (call-instruction 1 (+ depth 1) label) ; one argument
		      after))))
  (lambda (frame)
    (sequentially (lambda-protocol 1 #f #f #f)
                  (instruction (enum op current-cont))
		  (instruction (enum op push))
		  (instruction (enum op stack-ref) 1)
                  (call-instruction 1 (+ (frame-size frame) 1) #f)))) ; one argument, no return label

; (call-with-values producer consumer)

; Optimization 1 (not done):
;  If consumer is a lambda then generate it in-line with its own protocol as
; the return protocol for the producer.  Once you have the values on the stack
; it can be treated as a redex.
; 
; Optimization 2 (not done):
;  If both the consumer and producer are lambdas then do as above except
; that the producer gets a special multiple-values continuation.  There
; could be a VALUES opcode that moved its arguments down to the appropriate
; point and then jumped, or the jump could be a separate instruction.
;  The jump target would have a protocol to allow tail calls within the
; producer as well.
;
; The closed-compiled version gets the arguments on the stack in the wrong
; order for what it wants to do.  It does:
;                             *val*     stack
;   Start                     ?         consumer producer ...
;   (stack-ref+push 1)        producer  producer consumer producer ...
;   (false)                   #f        producer consumer producer ...
;   (stack-set! 2)            #f        producer consumer #f ...
;   (pop)                     producer  consumer #f ...
; to reverse the order.

(define-compiler-primitive 'call-with-values
  (proc ((proc () any-values-type #f)
         any-procedure-type)
        any-values-type)
  (lambda (node depth frame cont)
    (let ((args (cdr (node-form node))))
      (receive (ignore-before ignore-depth c-label c-after)
	  (maybe-push-continuation depth frame cont (cadr args))
	(receive (p-before p-depth p-label p-after)
	    (push-continuation-no-protocol (+ depth 1)
					   frame
					   (car args)
					   (fall-through-cont node 1))
	  (sequentially (push-argument node 1 depth frame)
			p-before
			(compile (car args)
				 p-depth
				 frame
				 (fall-through-cont node 1))
			(instruction-using-label (enum op call)
						 p-label
						 0)
			p-after
			(cwv-continuation-protocol c-label)
			c-after)))))
    (lambda (frame)
      (receive (before depth label after)
	  (push-continuation-no-protocol 2 frame #f (plain-fall-through-cont))
	(sequentially (lambda-protocol 2 #f #f #f)
		      (instruction (enum op stack-ref+push) 1)
		      (instruction (enum op false))
		      (instruction (enum op stack-set!) 2)
		      (instruction (enum op pop))
		      before
		      (using-optional-label (enum op call) label 0)
		      after
                      (cwv-continuation-protocol #f)))))

; Is NODE a lambda with a null variable list.

(define (thunk-node? node)
  (and (or (lambda-node? node)
	   (flat-lambda-node? node))
       (null? (cadr (node-form node)))))

; Works for both normal and flat lambdas.

(define (thunk-body node)
  (last (node-form node)))

; Return a non-flat version of the possibly-flat lambda NODE's form.

(define (unflatten-form node)
  (let ((form (node-form node)))
    (if (flat-lambda-node? node)
	`(lambda ,(cadr form) ,(cadddr form))
	form)))

; --------------------
; Variable-arity primitives

(define (define-n-ary-compiler-primitive name result-type min-nargs
                                         compilator closed)
  (define-compiler-primitive name
        (if result-type
            (procedure-type any-arguments-type result-type #f)
            #f)
    (if compilator
        (n-ary-primitive-compilator name min-nargs compilator)
        compile-unknown-call)
    closed))

(define (n-ary-primitive-compilator name min-nargs compilator)
  (lambda (node depth frame cont)
    (let ((exp (node-form node)))
      (if (>= (length (cdr exp)) min-nargs)
          (compilator node depth frame cont)
          (begin (warning 'n-ary-primitive-compilator
			  "too few arguments to primitive"
			  (schemify node))
                 (compile-unknown-call node depth frame cont))))))

; APPLY wants the arguments on the stack, with the final list on top, and the
; procedure in *VAL*.

(define-compiler-primitive 'apply
  (proc (any-procedure-type &rest value-type) any-values-type)
  (n-ary-primitive-compilator 'apply 2
    (lambda (node depth frame cont)
      (let* ((exp (node-form node))     ; (apply proc arg1 arg2 arg3 rest)
	     (proc+args+rest (cdr exp))
	     (rest+args               ; (rest arg3 arg2 arg1)
	      (reverse (cdr proc+args+rest)))
	     (args+rest+proc          ; (arg1 arg2 arg3 rest proc)
	      (reverse (cons (car proc+args+rest) rest+args)))
	     (stack-nargs (length (cdr rest+args))))
	(receive (before depth label after)
	    (maybe-push-continuation depth frame cont node)
	  (sequentially before
			(push-all-but-last args+rest+proc depth frame node)
			;; Operand is number of non-final arguments
			(using-optional-label (enum op apply)
					      label
					      (high-byte stack-nargs)
					      (low-byte stack-nargs))
			after)))))
  (lambda (frame)
    (sequentially (nary-primitive-protocol 2)
                  (instruction (enum op closed-apply)))))

; (values value1 value2 ...)
;
; Okay, this is the second half of the deal.
;  - if tail-recursive, then just push the arguments followed by the opcode
;  - if ignore-values continuation, then evaluate the arguments without
;    doing any pushes in between
;  - if fall-through, then there had better be only one value
;  - that's it for now, given that there is no special CALL-WITH-VALUES
;    continuation

(define-n-ary-compiler-primitive 'values #f 0
  (lambda (node depth frame cont)
    (let* ((args (cdr (node-form node)))
           (nargs (length args)))
      (cond ((= 1 nargs)		; +++ (we miss some errors this way)
	     (compile (car args)
		      depth
		      frame
		      cont))
	    ((return-cont? cont)
	     (depth-check! frame (+ depth nargs))
	     (sequentially (push-arguments node depth frame)
			   (instruction (enum op values)
					(high-byte nargs)
					(low-byte nargs))))
	    ((ignore-values-cont? cont)
	     (evaluate-arguments-for-effect args node depth frame))
	    ((fall-through-cont? cont)
	     (generate-trap depth
			    frame
			    cont
			    (if (= nargs 0)
				"returning no arguments where one is expected"
				(string-append "returning "
					       (number->string nargs)
					       " arguments where one is expected"))
			    (schemify node)))
	    (else
	     (assertion-violation 'values
				  "unknown compiler continuation for VALUES" cont)))))
  (lambda (frame)
    (sequentially (nary-primitive-protocol 0)
		  (instruction (enum op closed-values)))))

(define (evaluate-arguments-for-effect args node depth frame)
  (do ((args args (cdr args))
       (i 1 (+ i 1))
       (code empty-segment
	     (sequentially code
			   (compile (car args)
				    depth
				    frame
				    (fall-through-cont node i)))))
      ((null? args)
       code)))

; (call-external-value external-routine arg ...)

(define-n-ary-compiler-primitive 'call-external-value value-type 1
  #f                                         ;Could be done
  (lambda (frame)
    (sequentially (nary-primitive-protocol 1)
                  (instruction (enum op call-external-value))
                  (instruction (enum op return)))))

(define-n-ary-compiler-primitive 'call-external-value-2 value-type 1
  #f                                         ;Could be done
  (lambda (frame)
    (sequentially (nary-primitive-protocol 1)
                  (instruction (enum op call-external-value-2))
                  (instruction (enum op return)))))

(let ((n-ary-constructor
        (lambda (name type type-byte)
	  (define-n-ary-compiler-primitive name type 0
	    (lambda (node depth frame cont)
	      (let ((args (cdr (node-form node))))
		(sequentially (if (null? args)
				  empty-segment
				  (push-all-but-last args depth frame node))
			      (deliver-value
			       (instruction (enum op make-stored-object)
					    (length args)
					    type-byte)
			       cont))))
	    (lambda (frame)
              (sequentially
                (nary-primitive-protocol 0)
		(instruction (enum op closed-make-stored-object) type-byte)
		(instruction (enum op return))))))))
  (n-ary-constructor 'vector vector-type (enum stob vector))
  (n-ary-constructor 'record #f (enum stob record)))

; READ-BYTE, PEEK-BYTE and WRITE-BYTE

(let ((define-byte/char-io
	(lambda (id opcode type)
	  (define-compiler-primitive id
	    type
	    (lambda (node depth frame cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node depth frame cont)
		  (let ((args (cdr (node-form node))))
		    (if (null? args)
			(deliver-value (instruction opcode 1) cont)
			(sequentially
			 (push-all-but-last args depth frame node)
			 (deliver-value (instruction opcode 0) cont))))))
            (lambda (frame)
              (make-dispatch-protocol
	        ; Zero arguments
	        (sequentially (instruction opcode 1)
			      (instruction (enum op return)))
		; One argument
		(sequentially (instruction (enum op pop))
			      (instruction opcode 0)
			      (instruction (enum op return)))
	       empty-segment
	       empty-segment))))))
  (define-byte/char-io 'read-byte
    (enum op read-byte)
    (proc (&opt value-type) value-type))
  (define-byte/char-io 'peek-byte
    (enum op peek-byte)
    (proc (&opt value-type) value-type))
  (define-byte/char-io 'read-char
    (enum op read-char)
    (proc (&opt value-type) value-type))
  (define-byte/char-io 'peek-char
    (enum op peek-char)
    (proc (&opt value-type) value-type)))

(let ((define-byte/char-io
	(lambda (id opcode type)
	  (define-compiler-primitive id
	    type
	    (lambda (node depth frame cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node depth frame cont)
		  (let ((args (cdr (node-form node))))
		    (sequentially
		     (push-all-but-last args depth frame node)
		     (if (null? (cdr args))
			 (deliver-value (instruction opcode 1) cont)
			 (sequentially
			  (deliver-value (instruction opcode 0) cont)))))))
            (lambda (frame)
              (make-dispatch-protocol
                empty-segment
                ; One argument
                (sequentially (instruction (enum op pop))
			      (instruction opcode 1)
			      (instruction (enum op return)))
                ; Two arguments
                (sequentially (instruction (enum op pop))
			      (instruction opcode 0)
			      (instruction (enum op return)))
                empty-segment))))))
  (define-byte/char-io 'write-byte
    (enum op write-byte)
    (proc (integer-type &opt value-type) unspecific-type))
  (define-byte/char-io 'write-char
    (enum op write-char)
    (proc (char-type &opt value-type) unspecific-type)))

; Timings in 0.47 to figure out how to handle the optional ports.
; 
; reading 10**6 characters (no buffer underflow)
; empty loop    time:  3.44 seconds
; read-char     time:  3.68 seconds    ; special primitive, exceptions
; xread-char    time:  9.04 seconds    ; special primitive, no exceptions
; xxread-char   time: 14.05 seconds    ; no special primitive
; Currently, looping through a 10**6 character file takes 1.51 seconds or
; 2.50 seconds if you count the number of characters.

;----------------
; Variable-arity arithmetic primitives.

; +, *, bitwise-... take any number of arguments.

(let ((define+*
	(lambda (id opcode identity type)
	  (define-compiler-primitive id
	    (proc (&rest type) type)
	    (lambda (node depth frame cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node depth frame cont)
		  (let ((args (cdr (node-form node))))
		    (cond ((null? args)
			   (deliver-value
			     (stack-indirect-instruction
			       (template-offset frame depth)
			       (literal->index frame identity))
			     cont))
			  ((null? (cdr args))
			   (call-on-arg-and-id opcode identity (car args)
					       node depth frame cont))
			  (else
			   (call-on-args opcode args node depth frame cont))))))
	    (lambda (frame)
              (make-dispatch-protocol
                ; No arguments
                (sequentially (integer-literal-instruction identity)
			      (instruction (enum op return)))
                ; One argument
                (sequentially (integer-literal-instruction identity)
			      (instruction opcode)
			      (instruction (enum op return)))
                ; Two arguments
                (sequentially
                  (instruction (enum op pop))
                  (instruction opcode)
                  (instruction (enum op return)))
                ; More than two arguments
                (sequentially
                  (instruction (enum op pop))   ; pop off nargs
                  (instruction (enum op binary-reduce1))
                  (instruction opcode)
                  (instruction (enum op binary-reduce2))
                  (instruction (enum op return)))))))))
  (define+* '+ (enum op +) 0 number-type)
  (define+* '* (enum op *) 1 number-type)
  (define+* 'bitwise-ior (enum op bitwise-ior) 0 exact-integer-type)
  (define+* 'bitwise-xor (enum op bitwise-xor) 0 exact-integer-type)
  (define+* 'bitwise-and (enum op bitwise-and) -1 exact-integer-type))

; = and < and so forth take two or more arguments.

(let ((define=<
	(lambda (id opcode type)
	  (define-compiler-primitive id
	    (proc (type type &rest type) boolean-type)
	    (lambda (node depth frame cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node depth frame cont)
		  (let ((args (cdr (node-form node))))
		    (if (= (length args) 2)
			(call-on-args opcode args node depth frame cont)
			(compile-unknown-call node depth frame cont)))))
	    (lambda (frame)
              (make-dispatch-protocol
	        empty-segment
                empty-segment
                ; Two arguments
                (sequentially (instruction (enum op pop))  ; get first argument
			      (instruction opcode)
			      (instruction (enum op return)))
                ; More than two arguments
                (sequentially (instruction (enum op pop))
			      (instruction (enum op binary-reduce1))
			      (instruction opcode)
			      (instruction (enum op binary-comparison-reduce2))
			      (instruction (enum op return)))))))))
  (define=< '= (enum op =) real-type)
  (define=< '< (enum op <) real-type)
  (define=< '> (enum op >) real-type)
  (define=< '<= (enum op <=) real-type)
  (define=< '>= (enum op >=) real-type)
  (define=< 'char<? (enum op char<?) char-type)
  (define=< 'char=? (enum op char=?) char-type)
  (define=< 'string=? (enum op string=?) string-type))

; Returns code to apply OPCODE to IDENTITY and ARGUMENT.

(define (call-on-arg-and-id opcode identity argument node depth frame cont)
  (sequentially (stack-indirect-instruction (template-offset frame depth)
					    (literal->index frame identity))
		(instruction (enum op push))
		(compile argument (+ depth 1) frame (fall-through-cont node 1))
		(deliver-value (instruction opcode) cont)))
  
; Returns code to reduce ARGS using OPCODE.

(define (call-on-args opcode args node depth frame cont)
  (let ((start (sequentially
		 (push-all-but-last (list (car args)
					  (cadr args))
				    depth
				    frame
				    node)
		  (instruction opcode))))
    (let loop ((args (cddr args)) (i 3) (code start))
      (if (null? args)
	  (deliver-value code cont)
	  (loop (cdr args)
		(+ i 1)
		(sequentially code
			      (push-and-compile (car args)
						(+ depth 1)
						frame
						(fall-through-cont node i))
			      (instruction opcode)))))))

(define (push-and-compile node depth frame cont)
  (or (maybe-compile-with-push node depth frame #t)	; +++
      (sequentially push-instruction
		    (compile node depth frame cont))))

(define op/unspecific (get-operator 'unspecific))
(define op/literal (get-operator 'literal))

; -, and / take one or two arguments.

(let ((define-one-or-two
	(lambda (id opcode default-arg)
	  (define-compiler-primitive id
            (proc (number-type &opt number-type) number-type)
	    (lambda (node depth frame cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node depth frame cont)
		  (let* ((args (cdr (node-form node)))
			 (args (if (null? (cdr args))
				   (list (make-node op/literal default-arg)
					 (car args))
				   args)))
		    (sequentially
		     (push-all-but-last args depth frame node)
		     (deliver-value (instruction opcode) cont)))))
	    (lambda (frame)
              (make-dispatch-protocol
	        empty-segment
                ; One argument
                (sequentially (integer-literal-instruction default-arg)
			      (instruction (enum op push))
			      (instruction (enum op stack-ref) 1)
			      (instruction opcode)
			      (instruction (enum op return)))
                ; Two arguments
                (sequentially (instruction (enum op pop))
			      (instruction opcode)
			      (instruction (enum op return)))
                empty-segment))))))
  (define-one-or-two '- (enum op -) 0)
  (define-one-or-two '/ (enum op /) 1))

; ATAN also takes one or two arguments, but the meanings are disjoint.

(define-compiler-primitive 'atan
  (proc (number-type &opt number-type) number-type)
  (lambda (node depth frame cont)
    (if (node-ref node 'type-error)
	(compile-unknown-call node depth frame cont)
	(let* ((args (cdr (node-form node)))
	       (opcode (if (null? (cdr args))
			   (enum op atan1)
			   (enum op atan2))))
	  (sequentially
	   (push-all-but-last args depth frame node)
	   (deliver-value (instruction opcode) cont)))))
  (lambda (frame)
    (make-dispatch-protocol
      empty-segment
      ; One argument
      (sequentially (instruction (enum op pop))
		    (instruction (enum op atan1))
		    (instruction (enum op return)))
      ; Two arguments
      (sequentially (instruction (enum op pop))
		    (instruction (enum op atan2))
		    (instruction (enum op return)))
      empty-segment)))

; make-vector and make-string take one or two arguments.

(let ((define-one-or-two
	(lambda (id op-segment default-arg default-arg-segment type)
	  (define-compiler-primitive id
	    type
	    (lambda (node depth frame cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node depth frame cont)
		  (let* ((args (cdr (node-form node)))
			 (args (if (null? (cdr args))
				   (list (car args) default-arg)
				   args)))
		    (sequentially
		     (push-all-but-last args depth frame node)
		     (deliver-value op-segment cont)))))
	    (lambda (frame)
              (make-dispatch-protocol
	        empty-segment
		; One argument
                (sequentially default-arg-segment
			      op-segment
			      (instruction (enum op return)))
                ; Two arguments
                (sequentially (instruction (enum op pop))
			      op-segment
			      (instruction (enum op return)))
                empty-segment))))))
  (define-one-or-two 'make-vector
    (instruction (enum op make-vector-object) (enum stob vector))
    (make-node op/unspecific '(unspecific))
    (instruction (enum op unspecific))
    (proc (number-type &opt value-type) vector-type))
  (define-one-or-two 'make-string
    (instruction (enum op make-string))
    (make-node op/literal #\?)
    (sequentially (integer-literal-instruction (char->ascii #\?))
		  (instruction (enum op scalar-value->char)))
    (proc (number-type &opt char-type) string-type)))

; Text encoding/decoding

; These return multiple values, which is why this is more work.

(let ((define-encode/decode
	(lambda (name type arg-count retval-count
		      regular bang)
	  (let ((depth-inc (max (- arg-count 1) retval-count)))
	    (define-compiler-primitive name type
	      (lambda (node depth frame cont)
		(depth-check! frame (+ depth depth-inc))
		(let ((args (cdr (node-form node))))
		  (cond
		   ((return-cont? cont)
		    (sequentially (push-all-but-last args depth frame node)
				  (instruction regular)))
		   ((ignore-values-cont? cont)
		    (sequentially (push-all-but-last args depth frame node)
				  (instruction bang)))
		   ((fall-through-cont? cont)
		    (generate-trap depth
				   frame
				   cont
				   (string-append "returning " 
						  (number->string retval-count)
						  " arguments where one is expected")
				   (schemify node)))
		   (else
		    (assertion-violation 'define-encode/decode
					 "unknown compiler continuation" (enumerand->name regular op) cont)))))
	      (direct-closed-compilator regular))))))

  (define-encode/decode 'char->utf
    (proc (exact-integer-type char-type value-type exact-integer-type exact-integer-type)
	  (make-some-values-type (list boolean-type value-type)))
    5 2
    (enum op char->utf) (enum op char->utf!))

  (define-encode/decode 'utf->char
    (proc (exact-integer-type value-type exact-integer-type exact-integer-type)
	  (make-some-values-type (list value-type value-type)))
    4 2
    (enum op utf->char) (enum op utf->char!)))