1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
; Part of Scheme 48 1.9. See file COPYING for notices and license.
; Authors: Richard Kelsey, Jonathan Rees, Mike Sperber
; Transmogrify code to produce flat lexical environments.
;
; This takes two passes. The first finds the SET! variables so that cells can
; be added for them. The second pass adds a list of free variables to each
; non-call-position LAMBDA node. We don't need the free list for LET's.
(set-optimizer! 'flat-environments
(lambda (forms package)
(map (lambda (form)
(flatten-form (force-node form)))
forms)))
(define (flatten-form node)
(mark-set-variables! node) ; we need to introduce cells for SET! variables
(if (define-node? node)
(let ((form (node-form node)))
(make-similar-node node
`(define ,(cadr form)
,(flatten-node (caddr form)
(install-new-set!)))))
(flatten-node node (install-new-set!))))
; Main dispatch
; This returns a new node and a list of free lexical variables.
(define (flatten-node node free)
((operator-table-ref flatteners (node-operator-id node))
node
free))
; Particular operators
(define flatteners
(make-operator-table
(lambda (node free)
(make-similar-node node
(cons (car (node-form node))
(flatten-list (cdr (node-form node))
free))))))
(define (define-flattener name proc)
(operator-define! flatteners name #f proc))
(define (flatten-list nodes free)
(map (lambda (node)
(flatten-node node free))
nodes))
(define (no-free-vars node free)
node)
(define-flattener 'literal no-free-vars)
(define-flattener 'quote no-free-vars)
(define-flattener 'primitive-procedure no-free-vars)
; LAMBDA's get changed to FLAT-LAMBDA's if the lexical environment is
; non-empty.
; (FLAT-LAMBDA -formals- -free-vars- -body-)
(define-flattener 'lambda
(lambda (node free)
(flatten-lambda node caddr free #t)))
(define-flattener 'flat-lambda
(lambda (node free)
(flatten-lambda node cadddr free #t)))
(define (flatten-lambda node get-body free closure?)
(let ((exp (node-form node))
(my-free (install-new-set!)))
(let* ((formals (cadr exp))
(body (convert-lambda-body formals (get-body exp) my-free)))
(install-set! free)
(set-union! free my-free)
(if closure?
(make-node operator/flat-lambda
(list 'flat-lambda
formals
(set->list my-free)
body))
(make-node operator/lambda
(list 'lambda
formals
body))))))
; Flatten the body and make cells for any SET! variables.
(define (convert-lambda-body formals body free)
(let* ((var-nodes (normalize-formals formals))
(body (flatten-node body free)))
(set-difference! free var-nodes)
(add-cells body var-nodes)))
(define (add-cells exp vars)
(do ((vars vars (cdr vars))
(cells '() (if (assigned? (car vars))
(cons (make-make-cell (car vars)) cells)
cells)))
((null? vars)
(if (null? cells)
exp
(make-node operator/begin
`(begin
,@(reverse cells)
,exp))))))
; Lexical nodes are free and may have cells.
(define-flattener 'name
(lambda (node free)
(if (node-ref node 'binding)
node
(begin
(set-add-element! free node)
(if (assigned? node)
(make-cell-ref node)
node)))))
(define-flattener 'set!
(lambda (node free)
(let* ((exp (node-form node))
(var (cadr exp))
(value (flatten-node (caddr exp) free)))
(if (assigned? var)
(begin
(set-add-element! free var)
(make-cell-set! var value))
(make-similar-node node
(list 'set! var value))))))
(define-flattener 'call
(lambda (node free)
(let ((proc (car (node-form node)))
(args (cdr (node-form node))))
(make-similar-node node
(cons (cond ((and (lambda-node? proc)
(not (n-ary? (cadr (node-form proc)))))
(flatten-lambda proc caddr free #f))
((and (flat-lambda-node? proc)
(not (n-ary? (cadr (node-form proc)))))
(flatten-lambda proc cadddr free #f))
(else
(flatten-node proc free)))
(flatten-list args free))))))
(define-flattener 'loophole
(lambda (node free)
(let ((form (node-form node)))
(make-similar-node node
(list (car form)
(cadr form)
(flatten-node (caddr form) free))))))
; Use LET & SET! for LETRECs that have non-LAMBDA values.
(define-flattener 'letrec*
(lambda (node free)
(flatten-letrec node caddr free flatten-impure-letrec*)))
(define-flattener 'letrec
(lambda (node free)
(flatten-letrec node caddr free flatten-impure-letrec)))
(define-flattener 'pure-letrec
(lambda (node free)
(flatten-letrec node cadddr free flatten-impure-letrec)))
(define (flatten-letrec node get-body free flatten-impure)
(let ((form (node-form node)))
(let ((vars (map car (cadr form)))
(vals (map cadr (cadr form)))
(body (get-body form)))
(cond ((null? vars)
(flatten-node body free)) ;+++
((and (every (lambda (node)
(or (lambda-node? node)
(flat-lambda-node? node)))
vals)
(not (any assigned? vars)))
(flatten-pure-letrec vars vals body free)) ;+++
(else
(flatten-impure vars vals body free))))))
(define (flatten-pure-letrec vars vals body free)
(let* ((vals-free (install-new-set!))
(vals (flatten-list vals vals-free)))
(set-difference! vals-free vars)
(install-set! free)
(let ((body (flatten-node body free)))
(set-difference! free vars)
(set-union! free vals-free)
(make-node operator/pure-letrec
`(pure-letrec ,(map list vars vals)
,(set->list vals-free)
,body)))))
(define (flatten-impure-letrec vars vals body free)
(for-each (lambda (var)
(node-set! var 'assigned 'maybe))
vars)
(let ((vals (flatten-list vals free))
(temps (map (lambda (var)
(make-node operator/name var))
vars))
(body (flatten-node body free)))
(set-difference! free vars)
(make-node
operator/call
(cons
(make-node operator/lambda
`(lambda ,vars
,(make-node
operator/call
(cons
(make-node operator/lambda
`(lambda ,temps
,(make-node operator/begin
`(begin ,@(map make-cell-set!
vars
temps)
,body))))
vals))))
(map (lambda (ignore)
(make-unassigned-cell))
vars)))))
(define (flatten-impure-letrec* vars vals body free)
(for-each (lambda (var)
(node-set! var 'assigned 'maybe))
vars)
(let ((vals (flatten-list vals free))
(body (flatten-node body free)))
(set-difference! free vars)
(make-node
operator/call
(cons
(make-node operator/lambda
`(lambda ,vars
,(make-node operator/begin
`(begin ,@(map make-cell-set!
vars
vals)
,body))))
(map (lambda (ignore)
(make-unassigned-cell))
vars)))))
; Pick out the lexical variables from the list of free variables in the
; LAP form.
(define-flattener 'lap
(lambda (node free)
(for-each (lambda (var)
(if (not (node-ref var 'binding))
(set-add-element! free var)))
(caddr (node-form node)))
node))
;----------------
; Is name-node NODE SET! anywhere?
(define (assigned? node)
(node-ref node 'assigned))
; Gather the info needed by ASSIGNED?.
(define (mark-set-variables! node)
((operator-table-ref mark-sets (node-operator-id node))
node))
; Particular operators
(define mark-sets
(make-operator-table
(lambda (node)
(for-each mark-set-variables! (cdr (node-form node))))))
(define (define-set-marker name proc)
(operator-define! mark-sets name #f proc))
(define (no-sets node) #f)
(define-set-marker 'literal no-sets)
(define-set-marker 'quote no-sets)
(define-set-marker 'name no-sets)
(define-set-marker 'primitive-procedure no-sets)
(define-set-marker 'lap no-sets)
(define-set-marker 'lambda
(lambda (node)
(mark-set-variables! (caddr (node-form node)))))
(define-set-marker 'flat-lambda
(lambda (node)
(mark-set-variables! (cadddr (node-form node)))))
(define-set-marker 'set!
(lambda (node)
(let* ((exp (node-form node))
(var (cadr exp)))
(if (not (node-ref var 'binding))
(node-set! var 'assigned #t))
(mark-set-variables! (caddr exp)))))
(define-set-marker 'loophole
(lambda (node)
(mark-set-variables! (caddr (node-form node)))))
(define-set-marker 'call
(lambda (node)
(for-each mark-set-variables! (node-form node))))
(define-set-marker 'letrec
(lambda (node)
(mark-letrec-sets node caddr)))
(define-set-marker 'letrec*
(lambda (node)
(mark-letrec-sets node caddr)))
(define-set-marker 'pure-letrec
(lambda (node)
(mark-letrec-sets node cadddr)))
(define (mark-letrec-sets node get-body)
(let ((form (node-form node)))
(for-each (lambda (spec)
(mark-set-variables! (cadr spec)))
(cadr form))
(mark-set-variables! (get-body form))))
;----------------
; Cell manipulation calls.
(define (make-make-cell var)
(make-node operator/set!
(list 'set!
var
(make-primop-call (make-cell-primop) var))))
(define (make-unassigned-cell)
(make-primop-call (make-cell-primop)
(make-node (get-operator 'unassigned)
'(unassigned))))
; LETREC-bound cells need an additional check.
(define (make-cell-ref var)
(if (eq? 'maybe (node-ref var 'assigned))
(make-primop-call (unassigned-check-primop)
(really-make-cell-ref var))
(really-make-cell-ref var)))
(define (really-make-cell-ref var)
(make-primop-call (cell-ref-primop) var))
(define (make-cell-set! var value)
(make-primop-call (cell-set!-primop) var value))
(define (make-primop-call primop . args)
(make-node operator/call
(cons (make-node operator/literal
primop)
args)))
; We get loaded before these are defined, so we have to delay the lookups.
(define-syntax define-primop
(syntax-rules ()
((define-primop name id temp)
(begin
(define temp #f)
(define (name)
(or temp
(begin
(set! temp (get-primop 'id))
temp)))))))
(define-primop make-cell-primop make-cell temp0)
(define-primop cell-ref-primop cell-ref temp1)
(define-primop cell-set!-primop cell-set! temp2)
(define-primop unassigned-check-primop unassigned-check temp3)
;----------------
; Set operations on lists.
;
; These use side effects to make union and difference O(n). Name nodes are
; marked with the set they are in. These marks are only valid for one set
; at any given time.
(define (install-new-set!)
(list 'set))
(define (install-set! set)
(for-each (lambda (var)
(node-set! var 'set-owner set))
(cdr set)))
(define set->list cdr)
(define (set-add-element! set var)
(if (not (eq? set (node-ref var 'set-owner)))
(begin
(node-set! var 'set-owner set)
(set-cdr! set (cons var (cdr set))))))
(define (set-union! set other-set)
(for-each (lambda (var)
(set-add-element! set var))
(set->list other-set)))
(define (set-difference! set vars)
(for-each clear-var-set! vars)
(set-cdr! set (clean-var-list (cdr set))))
(define (clean-var-list list)
(cond ((null? list)
list)
((node-ref (car list) 'set-owner)
(cons (car list)
(clean-var-list (cdr list))))
(else
(clean-var-list (cdr list)))))
(define (clear-var-set! var)
(node-set! var 'set-owner #f))
|