File: flatten.scm

package info (click to toggle)
scheme48 1.9.2-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 18,232 kB
  • sloc: lisp: 88,907; ansic: 87,519; sh: 3,224; makefile: 771
file content (430 lines) | stat: -rw-r--r-- 11,488 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Richard Kelsey, Jonathan Rees, Mike Sperber

; Transmogrify code to produce flat lexical environments.
;
; This takes two passes.  The first finds the SET! variables so that cells can
; be added for them.  The second pass adds a list of free variables to each
; non-call-position LAMBDA node.  We don't need the free list for LET's.

(set-optimizer! 'flat-environments
  (lambda (forms package)
    (map (lambda (form)
           (flatten-form (force-node form)))
         forms)))

(define (flatten-form node)
  (mark-set-variables! node)  ; we need to introduce cells for SET! variables
  (if (define-node? node)
      (let ((form (node-form node)))
	(make-similar-node node
			   `(define ,(cadr form)
			      ,(flatten-node (caddr form)
					     (install-new-set!)))))
      (flatten-node node (install-new-set!))))

; Main dispatch
; This returns a new node and a list of free lexical variables.

(define (flatten-node node free)
  ((operator-table-ref flatteners (node-operator-id node))
     node
     free))

; Particular operators

(define flatteners
  (make-operator-table
   (lambda (node free)
     (make-similar-node node
			(cons (car (node-form node))
			      (flatten-list (cdr (node-form node))
					    free))))))

(define (define-flattener name proc)
  (operator-define! flatteners name #f proc))

(define (flatten-list nodes free)
  (map (lambda (node)
	 (flatten-node node free))
       nodes))

(define (no-free-vars node free)
  node)

(define-flattener 'literal             no-free-vars)
(define-flattener 'quote               no-free-vars)
(define-flattener 'primitive-procedure no-free-vars)

; LAMBDA's get changed to FLAT-LAMBDA's if the lexical environment is
; non-empty.
; (FLAT-LAMBDA -formals- -free-vars- -body-)

(define-flattener 'lambda
  (lambda (node free)
    (flatten-lambda node caddr free #t)))

(define-flattener 'flat-lambda
  (lambda (node free)
    (flatten-lambda node cadddr free #t)))

(define (flatten-lambda node get-body free closure?)
  (let ((exp (node-form node))
	(my-free (install-new-set!)))
    (let* ((formals (cadr exp))
	   (body (convert-lambda-body formals (get-body exp) my-free)))
      (install-set! free)
      (set-union! free my-free)
      (if closure?
	  (make-node operator/flat-lambda
		     (list 'flat-lambda
			   formals
			   (set->list my-free)
			   body))
	  (make-node operator/lambda
		     (list 'lambda
			   formals
			   body))))))
  
; Flatten the body and make cells for any SET! variables.

(define (convert-lambda-body formals body free)
  (let* ((var-nodes (normalize-formals formals))
	 (body (flatten-node body free)))
    (set-difference! free var-nodes)
    (add-cells body var-nodes)))

(define (add-cells exp vars)
  (do ((vars vars (cdr vars))
       (cells '() (if (assigned? (car vars))
		      (cons (make-make-cell (car vars)) cells)
		      cells)))
      ((null? vars)
       (if (null? cells)
	   exp
	   (make-node operator/begin
		      `(begin
			 ,@(reverse cells)
			 ,exp))))))

; Lexical nodes are free and may have cells.

(define-flattener 'name
  (lambda (node free)
    (if (node-ref node 'binding)
	node
	(begin
	  (set-add-element! free node)
	  (if (assigned? node)
	      (make-cell-ref node)
	      node)))))

(define-flattener 'set!
  (lambda (node free)
    (let* ((exp (node-form node))
	   (var (cadr exp))
	   (value (flatten-node (caddr exp) free)))
      (if (assigned? var)
	  (begin
	    (set-add-element! free var)
	    (make-cell-set! var value))
	  (make-similar-node node
			     (list 'set! var value))))))

(define-flattener 'call
  (lambda (node free)
    (let ((proc (car (node-form node)))
	  (args (cdr (node-form node))))
      (make-similar-node node
			 (cons (cond ((and (lambda-node? proc)
					   (not (n-ary? (cadr (node-form proc)))))
				      (flatten-lambda proc caddr free #f))
				     ((and (flat-lambda-node? proc)
					   (not (n-ary? (cadr (node-form proc)))))
				      (flatten-lambda proc cadddr free #f))
				     (else
				      (flatten-node proc free)))
			       (flatten-list args free))))))

(define-flattener 'loophole
  (lambda (node free)
    (let ((form (node-form node)))
      (make-similar-node node
			 (list (car form)
			       (cadr form)
			       (flatten-node (caddr form) free))))))
  
; Use LET & SET! for LETRECs that have non-LAMBDA values.

(define-flattener 'letrec*
  (lambda (node free)
    (flatten-letrec node caddr free flatten-impure-letrec*)))

(define-flattener 'letrec
  (lambda (node free)
    (flatten-letrec node caddr free flatten-impure-letrec)))

(define-flattener 'pure-letrec
  (lambda (node free)
    (flatten-letrec node cadddr free flatten-impure-letrec)))

(define (flatten-letrec node get-body free flatten-impure)
  (let ((form (node-form node)))
    (let ((vars (map car (cadr form)))
	  (vals (map cadr (cadr form)))
	  (body (get-body form)))
      (cond ((null? vars)
	     (flatten-node body free))			;+++
	    ((and (every (lambda (node)
			   (or (lambda-node? node)
			       (flat-lambda-node? node)))
			 vals)
		  (not (any assigned? vars)))
	     (flatten-pure-letrec vars vals body free))	;+++
	    (else
	     (flatten-impure vars vals body free))))))

(define (flatten-pure-letrec vars vals body free)
  (let* ((vals-free (install-new-set!))
	 (vals (flatten-list vals vals-free)))
    (set-difference! vals-free vars)
    (install-set! free)
    (let ((body (flatten-node body free)))
      (set-difference! free vars)
      (set-union! free vals-free)
      (make-node operator/pure-letrec
		 `(pure-letrec ,(map list vars vals)
			       ,(set->list vals-free)
			       ,body)))))

(define (flatten-impure-letrec vars vals body free)
  (for-each (lambda (var)
	      (node-set! var 'assigned 'maybe))
	    vars)
  (let ((vals (flatten-list vals free))
	(temps (map (lambda (var)
		      (make-node operator/name var))
		    vars))
	(body (flatten-node body free)))
    (set-difference! free vars)
    (make-node
     operator/call
     (cons
      (make-node operator/lambda
       `(lambda ,vars
	  ,(make-node
	    operator/call
	    (cons
	     (make-node operator/lambda
			`(lambda ,temps
			   ,(make-node operator/begin
				       `(begin ,@(map make-cell-set!
						      vars
						      temps)
					       ,body))))
	     vals))))
      (map (lambda (ignore)
	     (make-unassigned-cell))
	   vars)))))

(define (flatten-impure-letrec* vars vals body free)
  (for-each (lambda (var)
	      (node-set! var 'assigned 'maybe))
	    vars)
  (let ((vals (flatten-list vals free))
	(body (flatten-node body free)))
    (set-difference! free vars)
    (make-node
     operator/call
     (cons
      (make-node operator/lambda
		 `(lambda ,vars
		    ,(make-node operator/begin
				`(begin ,@(map make-cell-set!
					       vars
					       vals)
					,body))))
      (map (lambda (ignore)
	     (make-unassigned-cell))
	   vars)))))

; Pick out the lexical variables from the list of free variables in the
; LAP form.

(define-flattener 'lap
  (lambda (node free)
    (for-each (lambda (var)
		(if (not (node-ref var 'binding))
		    (set-add-element! free var)))
	      (caddr (node-form node)))
    node))

;----------------
; Is name-node NODE SET! anywhere?

(define (assigned? node)
  (node-ref node 'assigned))

; Gather the info needed by ASSIGNED?.

(define (mark-set-variables! node)
  ((operator-table-ref mark-sets (node-operator-id node))
   node))

; Particular operators

(define mark-sets
  (make-operator-table
   (lambda (node)
     (for-each mark-set-variables! (cdr (node-form node))))))

(define (define-set-marker name proc)
  (operator-define! mark-sets name #f proc))

(define (no-sets node) #f)

(define-set-marker 'literal             no-sets)
(define-set-marker 'quote               no-sets)
(define-set-marker 'name                no-sets)
(define-set-marker 'primitive-procedure no-sets)
(define-set-marker 'lap                 no-sets)

(define-set-marker 'lambda
  (lambda (node)
    (mark-set-variables! (caddr (node-form node)))))

(define-set-marker 'flat-lambda
  (lambda (node)
    (mark-set-variables! (cadddr (node-form node)))))

(define-set-marker 'set!
  (lambda (node)
    (let* ((exp (node-form node))
	   (var (cadr exp)))
      (if (not (node-ref var 'binding))
	  (node-set! var 'assigned #t))
      (mark-set-variables! (caddr exp)))))

(define-set-marker 'loophole
  (lambda (node)
    (mark-set-variables! (caddr (node-form node)))))

(define-set-marker 'call
  (lambda (node)
    (for-each mark-set-variables! (node-form node))))

(define-set-marker 'letrec
  (lambda (node)
    (mark-letrec-sets node caddr)))

(define-set-marker 'letrec*
  (lambda (node)
    (mark-letrec-sets node caddr)))

(define-set-marker 'pure-letrec
  (lambda (node)
    (mark-letrec-sets node cadddr)))

(define (mark-letrec-sets node get-body)
  (let ((form (node-form node)))
    (for-each (lambda (spec)
		(mark-set-variables! (cadr spec)))
	      (cadr form))
    (mark-set-variables! (get-body form))))

;----------------
; Cell manipulation calls.

(define (make-make-cell var)
  (make-node operator/set!
	     (list 'set!
		   var
		   (make-primop-call (make-cell-primop) var))))

(define (make-unassigned-cell)
  (make-primop-call (make-cell-primop)
		    (make-node (get-operator 'unassigned)
			       '(unassigned))))

; LETREC-bound cells need an additional check.

(define (make-cell-ref var)
  (if (eq? 'maybe (node-ref var 'assigned))
      (make-primop-call (unassigned-check-primop)
			(really-make-cell-ref var))
      (really-make-cell-ref var)))

(define (really-make-cell-ref var)
  (make-primop-call (cell-ref-primop) var))

(define (make-cell-set! var value)
  (make-primop-call (cell-set!-primop) var value))

(define (make-primop-call primop . args)
  (make-node operator/call
	     (cons (make-node operator/literal
			      primop)
		   args)))

; We get loaded before these are defined, so we have to delay the lookups.

(define-syntax define-primop
  (syntax-rules ()
    ((define-primop name id temp)
     (begin
       (define temp #f)
       (define (name)
	 (or temp
	     (begin
	       (set! temp (get-primop 'id))
	       temp)))))))

(define-primop make-cell-primop make-cell temp0)
(define-primop cell-ref-primop  cell-ref  temp1)
(define-primop cell-set!-primop cell-set! temp2)
(define-primop unassigned-check-primop unassigned-check temp3)

;----------------
; Set operations on lists.
;
; These use side effects to make union and difference O(n).  Name nodes are
; marked with the set they are in.  These marks are only valid for one set
; at any given time.

(define (install-new-set!)
  (list 'set))

(define (install-set! set)
  (for-each (lambda (var)
	      (node-set! var 'set-owner set))
	    (cdr set)))

(define set->list cdr)

(define (set-add-element! set var)
  (if (not (eq? set (node-ref var 'set-owner)))
      (begin
	(node-set! var 'set-owner set)
	(set-cdr! set (cons var (cdr set))))))

(define (set-union! set other-set)
  (for-each (lambda (var)
	      (set-add-element! set var))
	    (set->list other-set)))

(define (set-difference! set vars)
  (for-each clear-var-set! vars)
  (set-cdr! set (clean-var-list (cdr set))))

(define (clean-var-list list)
  (cond ((null? list)
	 list)
	((node-ref (car list) 'set-owner)
	 (cons (car list)
	       (clean-var-list (cdr list))))
	(else
	 (clean-var-list (cdr list)))))

(define (clear-var-set! var)
  (node-set! var 'set-owner #f))