1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
; Part of Scheme 48 1.9. See file COPYING for notices and license.
; Authors: Richard Kelsey, Jonathan Rees, Martin Gasbichler, Mike Sperber
; schemify
; This is only used for producing error and warning messages.
; Flush nodes and generated names in favor of something a little more
; readable. Eventually, (schemify node env) ought to produce an
; s-expression that has the same semantics as node, when node is fully
; expanded.
(define (schemify node . maybe-env)
(if (node? node)
(schemify-node node
(if (null? maybe-env)
#f
(car maybe-env)))
(schemify-sexp node)))
(define schemifiers
(make-operator-table (lambda (node env)
(let ((form (node-form node)))
(if (list? form)
(let ((op (car form)))
(cons (cond ((operator? op)
(operator-name op))
((node? op)
(schemify-node op env))
(else
(schemify-sexp op)))
(schemify-nodes (cdr form) env)))
form)))))
; We cache the no-env version because that's the one used to generate the
; sources in the debugging info (which takes up a lot of space).
(define (schemify-node node env)
(or (and (not env)
(node-ref node 'schemify))
(let ((form ((operator-table-ref schemifiers (node-operator-id node))
node
env)))
(if (not env)
(node-set! node 'schemify form))
form)))
(define (schemify-nodes nodes env)
(map (lambda (node)
(schemify-node node env))
nodes))
(define (define-schemifier name type proc)
(operator-define! schemifiers name type proc))
(define-schemifier 'name 'leaf
(lambda (node env)
(if env
(name->qualified (node-form node)
env)
(let ((form (node-form node)))
(if (or #f (node? form))
(schemify-node form env)
(desyntaxify form))))))
; Convert an alias (generated name) to S-expression form ("qualified name").
(define (name->qualified name env)
(cond ((not (generated? name))
name)
((let ((d0 (lookup env name))
(d1 (lookup env (generated-name name))))
(and d0 d1 (same-denotation? d0 d1)))
(generated-name name)) ;+++
(else
(make-qualified (qualify-parent (generated-parent-name name)
env)
(generated-name name)
(generated-uid name)))))
; As an optimization, we elide intermediate steps in the lookup path
; when possible. E.g.
; #(>> #(>> #(>> define-record-type define-accessors)
; define-accessor)
; record-ref)
; is replaced with
; #(>> define-record-type record-ref)
(define (qualify-parent name env)
(let recur ((name name) (env env))
(if (generated? name)
(let ((parent (generated-parent-name name)))
(if (and (environment-stable? env)
(let ((b1 (generic-lookup env name))
(b2 (generic-lookup env parent)))
(and b1
b2
(or (same-denotation? b1 b2)
(and (binding? b1)
(binding? b2)
(let ((s1 (binding-static b1))
(s2 (binding-static b2)))
(and (transform? s1)
(transform? s2)
(eq? (transform-env s1)
(transform-env s2)))))))))
(recur parent env) ;+++
(make-qualified (recur parent (generated-env name))
(generated-name name)
(generated-uid name))))
name)))
(define-schemifier 'quote syntax-type
(lambda (node env)
(let ((form (node-form node)))
`(quote ,(cadr form)))))
(define-schemifier 'call 'internal
(lambda (node env)
(map (lambda (node)
(schemify-node node env))
(node-form node))))
; We ignore the list of free variables in flat lambdas.
(define (schemify-lambda node env)
(let ((form (node-form node)))
`(lambda ,(schemify-formals (cadr form) env)
,(schemify-node (last form) env))))
(define-schemifier 'lambda syntax-type schemify-lambda)
(define-schemifier 'flat-lambda syntax-type schemify-lambda)
(define (schemify-formals formals env)
(cond ((node? formals)
(schemify-node formals env))
((pair? formals)
(cons (schemify-node (car formals) env)
(schemify-formals (cdr formals) env)))
(else
(schemify-sexp formals)))) ; anything besides '() ?
; let-syntax, letrec-syntax...
(define-schemifier 'letrec syntax-type
(lambda (node env)
(let ((form (node-form node)))
(schemify-letrec 'letrec (cadr form) (caddr form) env))))
(define-schemifier 'letrec* syntax-type
(lambda (node env)
(let ((form (node-form node)))
(schemify-letrec 'letrec* (cadr form) (caddr form) env))))
(define-schemifier 'pure-letrec syntax-type
(lambda (node env)
(let ((form (node-form node)))
(schemify-letrec 'letrec (cadr form) (cadddr form) env))))
(define (schemify-letrec op specs body env)
`(,op ,(map (lambda (spec)
(schemify-nodes spec env))
specs)
,(schemify-node body env)))
(define-schemifier 'loophole syntax-type
(lambda (node env)
(let ((form (node-form node)))
(list 'loophole
(type->sexp (cadr form) #t)
(schemify-node (caddr form) env)))))
(define-schemifier 'lap syntax-type
(lambda (node env)
(let ((form (node-form node)))
`(lap
,(cadr form)
,(schemify-nodes (caddr form) env)
. ,(cdddr form)))))
;----------------
(define (schemify-sexp thing)
(cond ((name? thing)
(desyntaxify thing))
((pair? thing)
(let ((x (schemify-sexp (car thing)))
(y (schemify-sexp (cdr thing))))
(if (and (eq? x (car thing))
(eq? y (cdr thing)))
thing ;+++
(cons x y))))
((vector? thing)
(let ((new (make-vector (vector-length thing) #f)))
(let loop ((i 0) (same? #t))
(if (>= i (vector-length thing))
(if same? thing new) ;+++
(let ((x (schemify-sexp (vector-ref thing i))))
(vector-set! new i x)
(loop (+ i 1)
(and same? (eq? x (vector-ref thing i)))))))))
(else thing)))
|