1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
; Part of Scheme 48 1.9. See file COPYING for notices and license.
; Authors: Mike Sperber
; Copyright (c) 2005-2006 by Basis Technology Corporation.
; Inversion lists are representations for sets of integers,
; represented as sorted sets of ranges.
; This was taken from Chapter 13 of Richard Gillam: Unicode Demystified.
; Mike doesn't know what the original source is.
; This was written as support code for the implementation of SRFI 14,
; which is why there's so many exports here nobody really needs.
(define-record-type inversion-list :inversion-list
(make-inversion-list min max
range-vector)
inversion-list?
;; minimum element, needed for complement & difference
(min inversion-list-min)
;; maximum element, needed size
;; we pretty much assume consistency for union / intersection for MIN and MAX
(max inversion-list-max)
;; consecutive elements are paired to form ranges of the form
;; [ (vector-ref v i) (vector-ref v (+ 1 i)) )
;; (except the last one, possibly)
(range-vector inversion-list-range-vector))
(define-record-discloser :inversion-list
(lambda (r)
(list 'inversion-list
(inversion-list-min r) (inversion-list-max r)
(inversion-list-range-vector r))))
(define (make-empty-inversion-list min max)
(make-inversion-list min max '#()))
(define (inversion-list-member? n i-list)
(let ((ranges (inversion-list-range-vector i-list)))
(let loop ((low 0)
(high (vector-length ranges)))
(if (< low high)
(let ((mid (quotient (+ low high) 2)))
(if (>= n (vector-ref ranges mid))
(loop (+ 1 mid) high)
(loop low mid)))
(odd? high)))))
(define (inversion-list-complement i-list)
(let* ((ranges (inversion-list-range-vector i-list))
(min (inversion-list-min i-list))
(max (inversion-list-max i-list))
(size (vector-length ranges)))
(make-inversion-list
min max
(cond
((zero? size)
(vector min))
((not (= min (vector-ref ranges 0)))
(if (and (even? size)
(= max (vector-ref ranges (- size 1))))
(let ((result (make-vector size)))
(vector-set! result 0 min)
(vector-copy! ranges 0 result 1 (- size 1))
result)
(let ((result (make-vector (+ 1 size))))
(vector-set! result 0 min)
(vector-copy! ranges 0 result 1 size)
result)))
((and (even? size)
(= max (vector-ref ranges (- size 1))))
(let ((result (make-vector (- size 2))))
(vector-copy! ranges 1 result 0 (- size 2))
result))
(else
(let ((result (make-vector (- size 1))))
(vector-copy! ranges 1 result 0 (- size 1))
result))))))
(define (make-inversion-list-union/intersection
proc-thunk ; for CALL-ERROR
write-increment-count write-decrement-count
process-first? decrement-count?
middle-increment
copy-extra-count)
(lambda (i-list-1 i-list-2)
(if (or (not (= (inversion-list-min i-list-1)
(inversion-list-min i-list-2)))
(not (= (inversion-list-max i-list-1)
(inversion-list-max i-list-2))))
(assertion-violation 'make-inversion-list-union/intersection
"min/max mismatch" (proc-thunk) i-list-1 i-list-2))
(let ((ranges-1 (inversion-list-range-vector i-list-1))
(ranges-2 (inversion-list-range-vector i-list-2))
(min (inversion-list-min i-list-1))
(max (inversion-list-max i-list-1)))
(let ((size-1 (vector-length ranges-1))
(size-2 (vector-length ranges-2)))
(let ((temp (make-vector (+ size-1 size-2))))
(let loop ((index-1 0) (index-2 0)
(count 0)
(index-result 0))
(if (and (< index-1 size-1)
(< index-2 size-2))
(let ((el-1 (vector-ref ranges-1 index-1))
(el-2 (vector-ref ranges-2 index-2)))
(call-with-values
(lambda ()
(if (or (< el-1 el-2)
(and (= el-1 el-2)
(process-first? index-1)))
(values index-1 el-1 (+ 1 index-1) index-2)
(values index-2 el-2 index-1 (+ 1 index-2))))
(lambda (index el index-1 index-2)
(if (even? index)
(if (= write-increment-count count)
(begin
(vector-set! temp index-result el)
(loop index-1 index-2 (+ 1 count) (+ 1 index-result)))
(loop index-1 index-2 (+ 1 count) index-result))
(if (= write-decrement-count count)
(begin
(vector-set! temp index-result el)
(loop index-1 index-2 (- count 1) (+ 1 index-result)))
(loop index-1 index-2 (- count 1) index-result))))))
(let* ((count
(if (or (and (not (= index-1 size-1))
(decrement-count? index-1))
(and (not (= index-2 size-2))
(decrement-count? index-2)))
(+ count middle-increment)
count))
(result-size
(if (= copy-extra-count count)
(+ index-result
(- size-1 index-1)
(- size-2 index-2))
index-result))
(result (make-vector result-size)))
(vector-copy! temp 0 result 0 index-result)
(if (= copy-extra-count count)
(begin
(vector-copy! ranges-1 index-1 result index-result
(- size-1 index-1))
(vector-copy! ranges-2 index-2 result index-result
(- size-2 index-2))))
(make-inversion-list min max result)))))))))
; for associative procedures only
(define (binary->n-ary proc/2)
(lambda (arg-1 . args)
(if (and (pair? args)
(null? (cdr args)))
(proc/2 arg-1 (car args))
(let loop ((args args)
(result arg-1))
(if (null? args)
result
(loop (cdr args) (proc/2 result (car args))))))))
(define inversion-list-union
(binary->n-ary
(make-inversion-list-union/intersection (lambda () inversion-list-union)
0 1 even? odd? -1 0)))
(define inversion-list-intersection
(binary->n-ary
(make-inversion-list-union/intersection (lambda () inversion-list-intersection)
1 2 odd? even? +1 2)))
(define inversion-list-difference
(binary->n-ary
(lambda (i-list-1 i-list-2)
(inversion-list-intersection i-list-1
(inversion-list-complement i-list-2)))))
(define (number->inversion-list min max n)
(if (or (< n min)
(>= n max))
(assertion-violation 'number->inversion-list "invalid number"
min max n))
(make-inversion-list min max
(if (= n (- max 1))
(vector n)
(vector n (+ n 1)))))
(define (numbers->inversion-list min max . numbers)
(cond
((null? numbers) (make-empty-inversion-list min max))
((null? (cdr numbers)) (number->inversion-list min max (car numbers)))
(else
(let loop ((numbers (cdr numbers))
(i-list (number->inversion-list min max (car numbers))))
(if (null? numbers)
i-list
(loop (cdr numbers)
(inversion-list-union
i-list
(number->inversion-list min max (car numbers)))))))))
(define (range->inversion-list min max left right)
(if (or (> min max)
(> left right)
(< left min)
(> right max))
(assertion-violation 'range->inversion-list "invalid range"
min max left right))
(make-inversion-list min max
(if (= right max)
(vector left)
(vector left right))))
(define (ranges->inversion-list min max . ranges)
(let loop ((ranges ranges)
(result (make-empty-inversion-list min max)))
(if (null? ranges)
result
(let ((range-pair (car ranges)))
(let ((left (car range-pair))
(right (cdr range-pair)))
(if (not (and (number? left)
(number? right)))
(assertion-violation 'ranges->inversion-list "invalid range"
min max (cons left right)))
(loop (cdr ranges)
(inversion-list-union result
(range->inversion-list min max left right))))))))
(define (inversion-list-adjoin i-list . numbers)
(inversion-list-union i-list
(apply
numbers->inversion-list
(inversion-list-min i-list)
(inversion-list-max i-list)
numbers)))
(define (inversion-list-remove i-list . numbers)
(inversion-list-difference i-list
(apply
numbers->inversion-list
(inversion-list-min i-list)
(inversion-list-max i-list)
numbers)))
(define (inversion-list-size i-list)
(let* ((ranges (inversion-list-range-vector i-list))
(size (vector-length ranges)))
(let loop ((index 0)
(count 0))
(cond
((>= index size) count)
((= (+ 1 index) size)
(+ count (- (inversion-list-max i-list)
(vector-ref ranges index))))
(else
(loop (+ 2 index)
(+ count
(- (vector-ref ranges (+ 1 index))
(vector-ref ranges index)))))))))
(define (inversion-list=? i-list-1 i-list-2)
(and (= (inversion-list-min i-list-1)
(inversion-list-min i-list-2))
(= (inversion-list-max i-list-1)
(inversion-list-max i-list-2))
(equal? (inversion-list-range-vector i-list-1)
(inversion-list-range-vector i-list-2))))
(define (inversion-list-copy i-list)
(make-inversion-list (inversion-list-min i-list)
(inversion-list-max i-list)
(vector-copy (inversion-list-range-vector i-list))))
; Iterate over the elements until DONE? (applied to the accumulator)
; returns #t
(define (inversion-list-fold/done? kons knil done? i-list)
(let* ((ranges (inversion-list-range-vector i-list))
(size (vector-length ranges)))
(let loop ((v knil)
(i 0))
(if (>= i size)
v
(let ((left (vector-ref ranges i))
(right (if (< i (- size 1))
(vector-ref ranges (+ 1 i))
(inversion-list-max i-list))))
(let inner-loop ((v v) (n left))
(if (>= n right)
(loop v (+ 2 i))
(let ((v (kons n v)))
(if (done? v)
v
(inner-loop v (+ 1 n)))))))))))
; It never ends with Olin
(define-record-type inversion-list-cursor :inversion-list-cursor
(make-inversion-list-cursor index number)
inversion-list-cursor?
;; index into the range vector (always even), #f if we're at the end
(index inversion-list-cursor-index)
;; number within that index
(number inversion-list-cursor-number))
(define (inversion-list-cursor i-list)
(let ((ranges (inversion-list-range-vector i-list)))
(if (zero? (vector-length ranges))
(make-inversion-list-cursor #f #f)
(make-inversion-list-cursor 0 (vector-ref ranges 0)))))
(define (inversion-list-cursor-at-end? cursor)
(not (inversion-list-cursor-index cursor)))
(define (inversion-list-cursor-next i-list cursor)
(let ((index (inversion-list-cursor-index cursor))
(number (inversion-list-cursor-number cursor)))
(let* ((ranges (inversion-list-range-vector i-list))
(size (vector-length ranges))
(right (if (>= (+ index 1) size)
(inversion-list-max i-list)
(vector-ref ranges (+ index 1)))))
(cond
((< number (- right 1))
(make-inversion-list-cursor index (+ 1 number)))
((< (+ index 2) size)
(make-inversion-list-cursor (+ index 2)
(vector-ref ranges (+ index 2))))
(else
(make-inversion-list-cursor #f #f))))))
(define (inversion-list-cursor-ref cursor)
(inversion-list-cursor-number cursor))
; Uses the same method as Olin's reference implementation for SRFI 14.
(define (inversion-list-hash i-list bound)
(let ((mask (let loop ((i #x10000)) ; skip first 16 iterations
(if (>= i bound)
(- i 1)
(loop (+ i i))))))
(let* ((range-vector (inversion-list-range-vector i-list))
(size (vector-length range-vector)))
(let loop ((i 0) (ans 0))
(if (>= i size)
(modulo ans bound)
(loop (+ 1 i)
(bitwise-and mask
(+ (* 37 ans)
(vector-ref range-vector i)))))))))
;; Utilities
(define (vector-copy! source source-start dest dest-start count)
(let loop ((i 0))
(if (< i count)
(begin
(vector-set! dest (+ dest-start i)
(vector-ref source (+ source-start i)))
(loop (+ 1 i))))))
(define (vector-copy v)
(let* ((size (vector-length v))
(copy (make-vector size)))
(vector-copy! v 0 copy 0 size)
copy))
|