1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
;;; The sort package -- stable vector merge & merge sort -*- Scheme -*-
;;; Copyright (c) 1998 by Olin Shivers.
;;; This code is open-source; see the end of the file for porting and
;;; more copyright information.
;;; Olin Shivers 10/98.
;;; Exports:
;;; (vector-merge < v1 v2 [start1 end1 start2 end2]) -> vector
;;; (vector-merge! < v v1 v2 [start0 start1 end1 start2 end2]) -> unspecific
;;;
;;; (vector-merge-sort < v [start end temp]) -> vector
;;; (vector-merge-sort! < v [start end temp]) -> unspecific
;;; Merge
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (vector-merge < v1 v2 [start1 end1 start2 end2]) -> vector
;;; (vector-merge! < v v1 v2 [start start1 end1 start2 end2]) -> unspecific
;;;
;;; Stable vector merge -- V1's elements come out ahead of equal V2 elements.
(define (vector-merge < v1 v2 . maybe-starts+ends)
(call-with-values
(lambda () (vectors-start+end-2 v1 v2 maybe-starts+ends))
(lambda (start1 end1 start2 end2)
(let ((ans (make-vector (+ (- end1 start1) (- end2 start2)))))
(%vector-merge! < ans v1 v2 0 start1 end1 start2 end2)
ans))))
(define (vector-merge! < v v1 v2 . maybe-starts+ends)
(call-with-values
(lambda ()
(if (pair? maybe-starts+ends)
(values (car maybe-starts+ends)
(cdr maybe-starts+ends))
(values 0
'())))
(lambda (start rest)
(call-with-values
(lambda () (vectors-start+end-2 v1 v2 rest))
(lambda (start1 end1 start2 end2)
(%vector-merge! < v v1 v2 start start1 end1 start2 end2))))))
;;; This routine is not exported. The code is tightly bummed.
;;;
;;; If these preconditions hold, the routine can be bummed to run with
;;; unsafe vector-indexing and fixnum arithmetic ops:
;;; - V V1 V2 are vectors.
;;; - START START1 END1 START2 END2 are fixnums.
;;; - (<= 0 START END0 (vector-length V),
;;; where end0 = start + (end1 - start1) + (end2 - start2)
;;; - (<= 0 START1 END1 (vector-length V1))
;;; - (<= 0 START2 END2 (vector-length V2))
;;; If you put these error checks in the two client procedures above, you can
;;; safely convert this procedure to use unsafe ops -- which is why it isn't
;;; exported. This will provide *huge* speedup.
(define (%vector-merge! elt< v v1 v2 start start1 end1 start2 end2)
(letrec ((vblit (lambda (fromv j i end) ; Blit FROMV[J,END) to V[I,?].
(let lp ((j j) (i i))
(vector-set! v i (vector-ref fromv j))
(let ((j (+ j 1)))
(if (< j end) (lp j (+ i 1))))))))
(cond ((<= end1 start1) (if (< start2 end2) (vblit v2 start2 start end2)))
((<= end2 start2) (vblit v1 start1 start end1))
;; Invariants: I is next index of V to write; X = V1[J]; Y = V2[K].
(else (let lp ((i start)
(j start1) (x (vector-ref v1 start1))
(k start2) (y (vector-ref v2 start2)))
(let ((i1 (+ i 1))) ; "i+1" is a complex number in R4RS!
(if (elt< y x)
(let ((k (+ k 1)))
(vector-set! v i y)
(if (< k end2)
(lp i1 j x k (vector-ref v2 k))
(vblit v1 j i1 end1)))
(let ((j (+ j 1)))
(vector-set! v i x)
(if (< j end1)
(lp i1 j (vector-ref v1 j) k y)
(vblit v2 k i1 end2))))))))))
;;; (vector-merge-sort < v [start end temp]) -> vector
;;; (vector-merge-sort! < v [start end temp]) -> unspecific
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Stable natural vector merge sort
(define (vector-merge-sort! < v . maybe-args)
(call-with-values
(lambda () (vector-start+end v maybe-args))
(lambda (start end)
(let ((temp (if (and (pair? maybe-args) ; kludge
(pair? (cdr maybe-args))
(pair? (cddr maybe-args)))
(caddr maybe-args)
(vector-copy v))))
(%vector-merge-sort! < v start end temp)))))
(define (vector-merge-sort < v . maybe-args)
(let ((ans (vector-copy v)))
(apply vector-merge-sort! < ans maybe-args)
ans))
;;; %VECTOR-MERGE-SORT! is not exported.
;;; Preconditions:
;;; V TEMP vectors
;;; START END fixnums
;;; START END legal indices for V and TEMP
;;; If these preconditions are ensured by the cover functions, you
;;; can safely change this code to use unsafe fixnum arithmetic and vector
;;; indexing ops, for *huge* speedup.
;;; This merge sort is "opportunistic" -- the leaves of the merge tree are
;;; contiguous runs of already sorted elements in the vector. In the best
;;; case -- an already sorted vector -- it runs in linear time. Worst case
;;; is still O(n lg n) time.
(define (%vector-merge-sort! elt< v0 l r temp0)
(define (xor a b) (not (eq? a b)))
;; Merge v1[l,l+len1) and v2[l+len1,l+len1+len2) into target[l,l+len1+len2)
;; Merge left-to-right, so that TEMP may be either V1 or V2
;; (that this is OK takes a little bit of thought).
;; V2=TARGET? is true if V2 and TARGET are the same, which allows
;; merge to punt the final blit half of the time.
(define (merge target v1 v2 l len1 len2 v2=target?)
(letrec ((vblit (lambda (fromv j i end) ; Blit FROMV[J,END) to TARGET[I,?]
(let lp ((j j) (i i)) ; J < END. The final copy.
(vector-set! target i (vector-ref fromv j))
(let ((j (+ j 1)))
(if (< j end) (lp j (+ i 1))))))))
(let* ((r1 (+ l len1))
(r2 (+ r1 len2)))
; Invariants:
(let lp ((n l) ; N is next index of
(j l) (x (vector-ref v1 l)) ; TARGET to write.
(k r1) (y (vector-ref v2 r1))) ; X = V1[J]
(let ((n+1 (+ n 1))) ; Y = V2[K]
(if (elt< y x)
(let ((k (+ k 1)))
(vector-set! target n y)
(if (< k r2)
(lp n+1 j x k (vector-ref v2 k))
(vblit v1 j n+1 r1)))
(let ((j (+ j 1)))
(vector-set! target n x)
(if (< j r1)
(lp n+1 j (vector-ref v1 j) k y)
(if (not v2=target?) (vblit v2 k n+1 r2))))))))))
;; Might hack GETRUN so that if the run is short it pads it out to length
;; 10 with insert sort...
;; Precondition: l < r.
(define (getrun v l r)
(let lp ((i (+ l 1)) (x (vector-ref v l)))
(if (>= i r)
(- i l)
(let ((y (vector-ref v i)))
(if (elt< y x)
(- i l)
(lp (+ i 1) y))))))
;; RECUR: Sort V0[L,L+LEN) for some LEN where 0 < WANT <= LEN <= (R-L).
;; That is, sort *at least* WANT elements in V0 starting at index L.
;; May put the result into either V0[L,L+LEN) or TEMP0[L,L+LEN).
;; Must not alter either vector outside this range.
;; Return:
;; - LEN -- the number of values we sorted
;; - ANSVEC -- the vector holding the value
;; - ANS=V0? -- tells if ANSVEC is V0 or TEMP
;;
;; LP: V[L,L+PFXLEN) holds a sorted prefix of V0.
;; TEMP = if V = V0 then TEMP0 else V0. (I.e., TEMP is the other vec.)
;; PFXLEN2 is a power of 2 <= PFXLEN.
;; Solve RECUR's problem.
(if (< l r) ; Don't try to sort an empty range.
(call-with-values
(lambda ()
(let recur ((l l) (want (- r l)))
(let ((len (- r l)))
(let lp ((pfxlen (getrun v0 l r)) (pfxlen2 1)
(v v0) (temp temp0)
(v=v0? #t))
(if (or (>= pfxlen want) (= pfxlen len))
(values pfxlen v v=v0?)
(let ((pfxlen2 (let lp ((j pfxlen2))
(let ((j*2 (+ j j)))
(if (<= j pfxlen) (lp j*2) j))))
(tail-len (- len pfxlen)))
;; PFXLEN2 is now the largest power of 2 <= PFXLEN.
;; (Just think of it as being roughly PFXLEN.)
(call-with-values
(lambda ()
(recur (+ pfxlen l) pfxlen2))
(lambda (nr-len nr-vec nrvec=v0?)
(merge temp v nr-vec l pfxlen nr-len
(xor nrvec=v0? v=v0?))
(lp (+ pfxlen nr-len) (+ pfxlen2 pfxlen2)
temp v (not v=v0?))))))))))
(lambda (ignored-len ignored-ansvec ansvec=v0?)
(if (not ansvec=v0?) (vector-portion-copy! v0 temp0 l r))))))
;;; Copyright
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This code is
;;; Copyright (c) 1998 by Olin Shivers.
;;; The terms are: You may do as you please with this code, as long as
;;; you do not delete this notice or hold me responsible for any outcome
;;; related to its use.
;;;
;;; Blah blah blah. Don't you think source files should contain more lines
;;; of code than copyright notice?
;;; Code tuning & porting
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This code is *tightly* bummed as far as I can go in portable Scheme.
;;;
;;; The two internal primitives that do the real work can be converted to
;;; use unsafe vector-indexing and fixnum-specific arithmetic ops *if* you
;;; alter the four small cover functions to enforce the invariants. This should
;;; provide *big* speedups. In fact, all the code bumming I've done pretty
;;; much disappears in the noise unless you have a good compiler and also
;;; can dump the vector-index checks and generic arithmetic -- so I've really
;;; just set things up for you to exploit.
;;;
;;; The optional-arg parsing, defaulting, and error checking is done with a
;;; portable R4RS macro. But if your Scheme has a faster mechanism (e.g.,
;;; Chez), you should definitely port over to it. Note that argument defaulting
;;; and error-checking are interleaved -- you don't have to error-check
;;; defaulted START/END args to see if they are fixnums that are legal vector
;;; indices for the corresponding vector, etc.
|