File: bignum-arith.scm

package info (click to toggle)
scheme48 1.9.2-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 18,232 kB
  • sloc: lisp: 88,907; ansic: 87,519; sh: 3,224; makefile: 771
file content (222 lines) | stat: -rw-r--r-- 6,551 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Richard Kelsey, Jonathan Rees, Martin Gasbichler, Mike Sperber

; These need to operate on both bignums and fixnums.
;bignum-add
;bignum-subtract
;bignum-multiply
;bignum-quotient
;bignum-remainder
;bignum-abs
;
; These only see bignums.
;bignum=
;bignum<

; This only sees fixnums.
;fixnum->bignum

;----------------

(define (add-space size0 size1)
  (bignum-digits->size (+ (max size0 size1) 1)))

; These take care of the extra space needed for fixnum arguments (they need
; to be converted to bignums).  SPACE-PROC takes the length of the two bignums
; and returns the space needed for the computation and results.

(define (binary-space-proc space-proc)
  (lambda (x y)
    (receive (length0 extra0)
	(integer-bignum-digits x)
      (receive (length1 extra1)
	  (integer-bignum-digits y)
	(+ (space-proc length0 length1)
	   extra0
	   extra1)))))

(define (unary-space-proc space-proc)
  (lambda (x)
    (receive (length extra)
	(integer-bignum-digits x)
      (+ (space-proc length)
	 extra))))

; While checking for space, which may cause a GC, we have to save the two
; arguments where they will be traced.

(define (binary-bignum-op space-proc proc)
  (let ((space-proc (binary-space-proc space-proc)))
    (lambda (x y)
      (let ((needed (space-proc x y)))
	(save-temp0! x)
	(save-temp1! y)
	(ensure-bignum-space! needed)
	(let ((x (integer->external-bignum (recover-temp0!)))
	      (y (integer->external-bignum (recover-temp1!))))
	  (external-bignum->integer (proc x y)))))))

; Same again for unary procedures.

(define (unary-bignum-op space-proc proc)
  (let ((space-proc (unary-space-proc space-proc)))
    (lambda (x)
      (let ((needed (space-proc x)))
	(save-temp0! x)
	(ensure-bignum-space! needed)
	(external-bignum->integer 
	  (proc (integer->external-bignum (recover-temp0!))))))))


(define bignum-add (binary-bignum-op add-space external-bignum-add))
(define bignum-subtract (binary-bignum-op add-space external-bignum-subtract))

(define bignum-multiply (binary-bignum-op (lambda (size0 size1)
				    (bignum-digits->size (+ size0 size1)))
					  external-bignum-multiply))

; Three bignums whose total length is twice the numerator plus two.

(define (divide-space numerator-size denominator-size)
  (+ (* 2 (bignum-digits->size numerator-size))
     (bignum-digits->size 2)))

(define bignum-quotient 
  (binary-bignum-op divide-space external-bignum-quotient))

(define bignum-remainder 
  (binary-bignum-op divide-space external-bignum-remainder))

(define (bignum-divide x y)
  (let ((needed ((binary-space-proc divide-space) x y)))
    (save-temp0! x)
    (save-temp1! y)
    (ensure-bignum-space! needed)
    (let ((x (integer->external-bignum (recover-temp0!)))
	  (y (integer->external-bignum (recover-temp1!))))
      (receive (div-by-zero? quot rem)
	  (external-bignum-divide x y)
	(if div-by-zero?
	    (values #t
		    (enter-fixnum 0)   ;just to have a descriptor
		    (enter-fixnum 0)
		    (external-bignum->integer x) (external-bignum->integer y))
	    (values #f
		    (external-bignum->integer quot)
		    (external-bignum->integer rem)
		    (external-bignum->integer x) (external-bignum->integer y)))))))

(define (shift-space x n)
  (receive (x-size extra)
	   (integer-bignum-digits x)
    (+ extra
       (if (>= n 0)
	   (+ (bignum-digits->size x-size) 
	      (bignum-digits->size (quotient n bignum-digit-bits))
	      1)
	   (+ (* 2 (not-space x-size))
	      (+ (bignum-digits->size x-size) 1))))))

(define (bignum-arithmetic-shift x y)
  (let* ((y (extract-fixnum y))
	 (needed (shift-space x y)))
    (save-temp0! x)
    (ensure-bignum-space! needed)
    (let ((x (integer->external-bignum (recover-temp0!))))
      (external-bignum->integer (external-bignum-arithmetic-shift x y)))))

;;; bitwise-not x == (- -1 x)
;;; ignore that -1 is cached...
(define (not-space size0)
  (add-space size0 fixnum-as-bignum-digits))

(define bignum-bitwise-not 
  (unary-bignum-op not-space external-bignum-bitwise-not))

(define bignum-bit-count
  (let ((space-proc (unary-space-proc not-space)))
    (lambda (x)
      (let ((needed (space-proc x)))
	(save-temp0! x)
	(ensure-bignum-space! needed)
	(enter-fixnum
	  (external-bignum-bit-count
	    (integer->external-bignum (recover-temp0!))))))))

(define (bitwise-space size0 size1)
  (bignum-digits->size (+ (max size0 size1) 1)))

(define bignum-bitwise-and 
  (binary-bignum-op bitwise-space external-bignum-bitwise-and))
(define bignum-bitwise-ior
  (binary-bignum-op bitwise-space external-bignum-bitwise-ior))
(define bignum-bitwise-xor 
  (binary-bignum-op bitwise-space external-bignum-bitwise-xor))

; These are not applied to fixnums.

(define (bignum= x y)
  (external-bignum-equal? (extract-bignum x)
			  (extract-bignum y)))

(define (bignum< x y)
  (= -1 (external-bignum-compare (extract-bignum x)
				 (extract-bignum y))))

(define bignum-abs (unary-bignum-op 
		    (lambda (size) size)
		    (lambda (x)
		      (if (= (external-bignum-test x)
			     -1)
			  (external-bignum-negate x)
			  x))))

(define (bignum-positive? x)
  (= (external-bignum-test (extract-bignum x)) 1))

(define (bignum-nonnegative? x)
  (not (= (external-bignum-test (extract-bignum x)) -1)))

;----------------
; Return the number of bignum digits in an integer.  For fixnums this is a
; fixed amount.  The second return value is the amount of space needed to
; convert the argument into a bignum.

(define (integer-bignum-digits x)
  (if (fixnum? x)
      (values fixnum-as-bignum-digits
	      fixnum-as-bignum-size)
      (values (bignum-digits x)
	      0)))

; Converting back and forth between Scheme 48 integers and external bignums.

(define (integer->external-bignum desc)
  (if (fixnum? desc)
      (long->external-bignum (extract-fixnum desc))
      (extract-bignum desc)))

(define (long->external-bignum x)
  (external-bignum-from-long x))

(define (unsigned-long->external-bignum x)
  (external-bignum-from-unsigned-long x))

; Converting between longs and bignums

(define (long->bignum x key)
  (set-bignum-preallocation-key! key)
  (enter-bignum (long->external-bignum x)))

(define (unsigned-long->bignum x key)
  (set-bignum-preallocation-key! key)
  (enter-bignum (unsigned-long->external-bignum x)))

(define (external-bignum->integer external-bignum)
  (if (external-bignum-fits-in-word? external-bignum
				     bits-per-fixnum
				     #t)
      (enter-fixnum (external-bignum->long external-bignum))
      (enter-bignum external-bignum)))