File: generic-arith.scm

package info (click to toggle)
scheme48 1.9.2-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 18,232 kB
  • sloc: lisp: 88,907; ansic: 87,519; sh: 3,224; makefile: 771
file content (368 lines) | stat: -rw-r--r-- 10,739 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Richard Kelsey, Jonathan Rees

; Generic arithmetic.

; The different kinds of numbers.

(define-enumeration numbers
  (fixnum
   bignum
   rational
   float
   complex
   not-a-number))

; Mapping numbers to their representation.

(define stob-numbers
  (make-vector stob-count (enum numbers not-a-number)))

; For now all we have are bignums (and fixnums, of course).
(vector-set! stob-numbers (enum stob bignum) (enum numbers bignum))

(define (number->representation x)
  (cond ((fixnum? x)
	 (enum numbers fixnum))
	((stob? x)
	 (vector-ref stob-numbers (header-type (stob-header x))))
	(else
	 (enum numbers not-a-number))))

;----------------
; Tables for unary and binary operations.  All entries initially return DEFAULT.

(define (make-unary-table default)
  (make-vector numbers-count
	       (lambda (x)
		 default)))
	
; (unary-table-set! <table> <type> <value>)
; (unary-table-set! <table> (<type> ...) <value>)

(define-syntax unary-table-set!
  (syntax-rules ()
    ((unary-table-set! ?table (?kind ...) ?value)
     (real-unary-table-set! ?table (list (enum numbers ?kind) ...) ?value))
    ((unary-table-set! ?table ?kind ?value)
     (real-unary-table-set! ?table (list (enum numbers ?kind)) ?value))))

(define (real-unary-table-set! table kinds value)
  (for-each (lambda (kind)
	      (vector-set! table kind value))
	    kinds))

(define (unary-dispatch table x)
  ((vector-ref table
	       (number->representation x))
     x))

(define (make-binary-table default)
  (make-vector (* numbers-count numbers-count)
	       (lambda (x y)
		 default)))

; Same as for unary tables, except that we have two indexes or lists of indexes.

(define-syntax binary-table-set!
  (syntax-rules ()
    ((binary-table-set! ?table (?kind0 ...) (?kind1 ...) ?value)
     (real-binary-table-set! ?table
			     (list (enum numbers ?kind0) ...)
			     (list (enum numbers ?kind1) ...)
			     ?value))
    ((binary-table-set! ?table (?kind0 ...) ?kind1 ?value)
     (real-binary-table-set! ?table
			     (list (enum numbers ?kind0) ...)
			     (list (enum numbers ?kind1))
			     ?value))
    ((binary-table-set! ?table ?kind0 (?kind1 ...) ?value)
     (real-binary-table-set! ?table
			     (list (enum numbers ?kind0))
			     (list (enum numbers ?kind1) ...)
			     ?value))
    ((binary-table-set! ?table ?kind0 ?kind1 ?value)
     (real-binary-table-set! ?table
			     (list (enum numbers ?kind0))
			     (list (enum numbers ?kind1))
			     ?value))))

(define (real-binary-table-set! table kinds0 kinds1 value)
  (for-each (lambda (kind0)
	      (for-each (lambda (kind1)
			  (vector-set! table
				       (+ (* kind0 numbers-count)
					  kind1)
				       value))
			kinds1))
	    kinds0))

; Does this need to be changed to get a computed goto?

(define (binary-dispatch table x y)
  ((vector-ref table
	       (+ (* (number->representation x)
		     numbers-count)
		  (number->representation y)))
     x
     y))

(define (binary-lose x y)
  unspecific-value)

;----------------
; The actual opcodes

; Predicates

(define-primitive number? (any->)
  (lambda (x)
    (not (= (number->representation x)
	    (enum numbers not-a-number))))
  return-boolean)

(define-primitive integer? (any->)
  (lambda (x)
    (let ((type (number->representation x)))
      (or (= type (enum numbers fixnum))
	  (= type (enum numbers bignum)))))
  return-boolean)

(define-primitive rational? (any->)
  (lambda (x)
    (let ((type (number->representation x)))
      (or (= type (enum numbers fixnum))
	  (= type (enum numbers bignum))
	  (= type (enum numbers rational)))))
  return-boolean)

(define-primitive real? (any->)
  (lambda (x)
    (let ((type (number->representation x)))
      (not (or (= type (enum numbers complex))
	       (= type (enum numbers not-a-number))))))
  return-boolean)

(define-primitive complex? (any->)
  (lambda (x)
    (not (= (number->representation x)
	    (enum numbers not-a-number))))
  return-boolean)

(define-primitive exact? (any->)
  (lambda (x)
    (enum-case number (number->representation x)
	       ((float)
		(goto return-boolean #f))
	       ((complex)
		(goto return-boolean (not (float? (complex-real-part x)))))
	       ((not-a-number)
		(raise-exception wrong-type-argument 0 x))
	       (else
		(goto return-boolean #t)))))

;----------------
; Arithmetic

(define-syntax define-binary-primitive
  (syntax-rules ()
    ((define-binary-primitive id table careful integer)
     (define table (make-binary-table binary-lose))
     (define-primitive id (any-> any->)
       (lambda (x y)
	 (if (and (fixnum? x)
		  (fixnum? y))
	     (goto careful
		   x
		   y
		   return
		   (lambda (x y)
		     (goto return (integer x y))))
	     (let ((r (binary-dispatch table x y)))
	       (if (vm-eq? r unspecific-value)
		   (raise-exception wrong-type-argument 0 x y)
		   (goto return r))))))
     (binary-table-set! table (fixnum bignum) (fixnum bignum) integer))))

(define-binary-primitive + add-table add-carefully integer-add)
(define-binary-primitive - subtract-table subtract-carefully integer-subtract)
(define-binary-primitive * multiply-table multiply-carefully integer-multiply)
(define-binary-primitive quotient quotient-table quotient-carefully integer-quotient)
(define-binary-primitive remainder remainder-table remainder-carefully integer-remainder)
(define-binary-primitive arithmetic-shift shift-table shift-carefully integer-shift)

; Hm.  There is no integer-divide (obviously)

(define-binary-primitive / divide-table divide-carefully integer-)












****************************************************************

How to structure all this?  It would be nice if the interpreter could be
broken into several modules.  The registers and define-primitive would
need to be separated out.

;----------------
; Tower predicates.
; These need to be changed.

(define-unary-opcode-extension integer?       &integer?  #f)
(define-unary-opcode-extension rational?      &rational? #f)
(define-unary-opcode-extension real?          &real?     #f)
(define-unary-opcode-extension complex?       &complex?  #f)
(define-unary-opcode-extension number?        &number?   #f)
(define-unary-opcode-extension exact?         &exact?    #f)

(let ((true (lambda (x) #t)))
  (unary-table-set! &integer?  (fixnum bignum)                        true)
  (unary-table-set! &rational? (fixnum bignum rational)               true)
  (unary-table-set! &real?     (fixnum bignum rational float)         true)
  (unary-table-set! &complex?  (fixnum bignum rational float complex) true)
  (unary-table-set! &number?   (fixnum bignum rational float complex) true)
  (unary-table-set! &exact?    (fixnum bignum rational)               true))

; The two parts of a complex number must have the same exactness.

(unary-table-set! &exact? (complex)
		  (lambda (z)
		    (real-part z)))

;----------------
; Imaginary operations.

(define-unary-opcode-extension real-part      &real-part (lambda (x) x))
(define-unary-opcode-extension imag-part      &imag-part (lambda (x) 0))

(unary-table-set! &real-part (complex not-a-number)
		  (lambda (x) unimplemented))

(unary-table-set! &imag-part (complex not-a-number)
		  (lambda (x) unimplemented))

;----------------
; Fractions

(define-unary-opcode-extension floor          &floor)
(define-unary-opcode-extension numerator      &numerator)
(define-unary-opcode-extension denominator    &denominator)

(define (identity x) x)

(unary-table-set! &floor       (fixnum bignum) identity)
(unary-table-set! &numerator   (fixnum bignum) identity)
(unary-table-set! &denominator (fixnum bignum) (lambda (x) 1))

;----------------
; Square root.

(define-unary-opcode-extension sqrt &sqrt)

; The bignum code could whack this.
; The VM doesn't do sqrt for positive fixnums.  I wonder why?

; For negative N, we lose if MAKE-RECTANGULAR loses.

(unary-table-set! &sqrt (fixnum bignum)
  (lambda (n)
    (if (>= n 0)
	(non-negative-integer-sqrt n)	;Dubious (JAR)
	(let ((s (non-negative-integer-sqrt (- n))))
	  (if (eq? s unimplemented)
	      s
	      (binary-dispatch &make-rectangular
			       0
			       s))))))

; Courtesy of Mr. Newton.

(define (non-negative-integer-sqrt n)
  (if (<= n 1)    ; for both 0 and 1
      n
      (let loop ((m (quotient n 2)))
	(let ((m1 (quotient n m)))
	  (cond ((< m1 m)
		 (loop (quotient (+ m m1) 2)))
		((= n (* m m))
		 m)
		(else
		 unimplemented))))))

;----------------
; Make sure this has very low priority, so that it's only tried as a
; last resort.
;
; In fact, I'll comment it out completely. -RK

;(define-method &/ (m n)
;  (if (and (integer? m) (integer? n))
;      (if (= 0 (remainder m n))
;          (quotient m n)
;          (let ((z (abs (quotient n 2))))
;            (set-exactness (quotient (if (< m 0)
;                                         (- m z)
;                                         (+ m z))
;                                     n)
;                           #f)))
;      (next-method)))

;----------------
; The rest have no useful defaults.

(define-unary-opcode-extension exact->inexact &exact->inexact)
(define-unary-opcode-extension inexact->exact &inexact->exact)

(define-binary-opcode-extension +              &+)
(define-binary-opcode-extension -              &-)
(define-binary-opcode-extension *              &*)
(define-binary-opcode-extension /              &/)
(define-binary-opcode-extension =              &=)
(define-binary-opcode-extension <              &<)
(define-binary-opcode-extension quotient       &quotient)
(define-binary-opcode-extension remainder      &remainder)
  
(define-binary-opcode-extension make-rectangular &make-rectangular)

(define-unary-opcode-extension exp  &exp)
(define-unary-opcode-extension log  &log)
(define-unary-opcode-extension sin  &sin)
(define-unary-opcode-extension cos  &cos)
(define-unary-opcode-extension tan  &tan)
(define-unary-opcode-extension asin &asin)
(define-unary-opcode-extension acos &acos)
(define-unary-opcode-extension atan &atan)

; >, <=, and >= are all extended using the table for <.

(extend-opcode! (enum op >)
		(lambda (lose)
		  (lambda (reason arg0 arg1)
		    (let ((res (binary-dispatch &< arg1 arg0)))
		      (if (eq? res unimplemented)
			  (lose reason arg0 arg1)
			  res)))))
(extend-opcode! (enum op <=)
		(lambda (lose)
		  (lambda (reason arg0 arg1)
		    (let ((res (binary-dispatch &< arg1 arg0)))
		      (if (eq? res unimplemented)
			  (lose reason arg0 arg1)
			  (not res))))))
(extend-opcode! (enum op >=)
		(lambda (lose)
		  (lambda (reason arg0 arg1)
		    (let ((res (binary-dispatch &< arg0 arg1)))
		      (if (eq? res unimplemented)
			  (lose reason arg0 arg1)
			  (not res))))))