1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
; Part of Scheme 48 1.9. See file COPYING for notices and license.
; Authors: Richard Kelsey, Jonathan Rees
; Generic arithmetic.
; The different kinds of numbers.
(define-enumeration numbers
(fixnum
bignum
rational
float
complex
not-a-number))
; Mapping numbers to their representation.
(define stob-numbers
(make-vector stob-count (enum numbers not-a-number)))
; For now all we have are bignums (and fixnums, of course).
(vector-set! stob-numbers (enum stob bignum) (enum numbers bignum))
(define (number->representation x)
(cond ((fixnum? x)
(enum numbers fixnum))
((stob? x)
(vector-ref stob-numbers (header-type (stob-header x))))
(else
(enum numbers not-a-number))))
;----------------
; Tables for unary and binary operations. All entries initially return DEFAULT.
(define (make-unary-table default)
(make-vector numbers-count
(lambda (x)
default)))
; (unary-table-set! <table> <type> <value>)
; (unary-table-set! <table> (<type> ...) <value>)
(define-syntax unary-table-set!
(syntax-rules ()
((unary-table-set! ?table (?kind ...) ?value)
(real-unary-table-set! ?table (list (enum numbers ?kind) ...) ?value))
((unary-table-set! ?table ?kind ?value)
(real-unary-table-set! ?table (list (enum numbers ?kind)) ?value))))
(define (real-unary-table-set! table kinds value)
(for-each (lambda (kind)
(vector-set! table kind value))
kinds))
(define (unary-dispatch table x)
((vector-ref table
(number->representation x))
x))
(define (make-binary-table default)
(make-vector (* numbers-count numbers-count)
(lambda (x y)
default)))
; Same as for unary tables, except that we have two indexes or lists of indexes.
(define-syntax binary-table-set!
(syntax-rules ()
((binary-table-set! ?table (?kind0 ...) (?kind1 ...) ?value)
(real-binary-table-set! ?table
(list (enum numbers ?kind0) ...)
(list (enum numbers ?kind1) ...)
?value))
((binary-table-set! ?table (?kind0 ...) ?kind1 ?value)
(real-binary-table-set! ?table
(list (enum numbers ?kind0) ...)
(list (enum numbers ?kind1))
?value))
((binary-table-set! ?table ?kind0 (?kind1 ...) ?value)
(real-binary-table-set! ?table
(list (enum numbers ?kind0))
(list (enum numbers ?kind1) ...)
?value))
((binary-table-set! ?table ?kind0 ?kind1 ?value)
(real-binary-table-set! ?table
(list (enum numbers ?kind0))
(list (enum numbers ?kind1))
?value))))
(define (real-binary-table-set! table kinds0 kinds1 value)
(for-each (lambda (kind0)
(for-each (lambda (kind1)
(vector-set! table
(+ (* kind0 numbers-count)
kind1)
value))
kinds1))
kinds0))
; Does this need to be changed to get a computed goto?
(define (binary-dispatch table x y)
((vector-ref table
(+ (* (number->representation x)
numbers-count)
(number->representation y)))
x
y))
(define (binary-lose x y)
unspecific-value)
;----------------
; The actual opcodes
; Predicates
(define-primitive number? (any->)
(lambda (x)
(not (= (number->representation x)
(enum numbers not-a-number))))
return-boolean)
(define-primitive integer? (any->)
(lambda (x)
(let ((type (number->representation x)))
(or (= type (enum numbers fixnum))
(= type (enum numbers bignum)))))
return-boolean)
(define-primitive rational? (any->)
(lambda (x)
(let ((type (number->representation x)))
(or (= type (enum numbers fixnum))
(= type (enum numbers bignum))
(= type (enum numbers rational)))))
return-boolean)
(define-primitive real? (any->)
(lambda (x)
(let ((type (number->representation x)))
(not (or (= type (enum numbers complex))
(= type (enum numbers not-a-number))))))
return-boolean)
(define-primitive complex? (any->)
(lambda (x)
(not (= (number->representation x)
(enum numbers not-a-number))))
return-boolean)
(define-primitive exact? (any->)
(lambda (x)
(enum-case number (number->representation x)
((float)
(goto return-boolean #f))
((complex)
(goto return-boolean (not (float? (complex-real-part x)))))
((not-a-number)
(raise-exception wrong-type-argument 0 x))
(else
(goto return-boolean #t)))))
;----------------
; Arithmetic
(define-syntax define-binary-primitive
(syntax-rules ()
((define-binary-primitive id table careful integer)
(define table (make-binary-table binary-lose))
(define-primitive id (any-> any->)
(lambda (x y)
(if (and (fixnum? x)
(fixnum? y))
(goto careful
x
y
return
(lambda (x y)
(goto return (integer x y))))
(let ((r (binary-dispatch table x y)))
(if (vm-eq? r unspecific-value)
(raise-exception wrong-type-argument 0 x y)
(goto return r))))))
(binary-table-set! table (fixnum bignum) (fixnum bignum) integer))))
(define-binary-primitive + add-table add-carefully integer-add)
(define-binary-primitive - subtract-table subtract-carefully integer-subtract)
(define-binary-primitive * multiply-table multiply-carefully integer-multiply)
(define-binary-primitive quotient quotient-table quotient-carefully integer-quotient)
(define-binary-primitive remainder remainder-table remainder-carefully integer-remainder)
(define-binary-primitive arithmetic-shift shift-table shift-carefully integer-shift)
; Hm. There is no integer-divide (obviously)
(define-binary-primitive / divide-table divide-carefully integer-)
****************************************************************
How to structure all this? It would be nice if the interpreter could be
broken into several modules. The registers and define-primitive would
need to be separated out.
;----------------
; Tower predicates.
; These need to be changed.
(define-unary-opcode-extension integer? &integer? #f)
(define-unary-opcode-extension rational? &rational? #f)
(define-unary-opcode-extension real? &real? #f)
(define-unary-opcode-extension complex? &complex? #f)
(define-unary-opcode-extension number? &number? #f)
(define-unary-opcode-extension exact? &exact? #f)
(let ((true (lambda (x) #t)))
(unary-table-set! &integer? (fixnum bignum) true)
(unary-table-set! &rational? (fixnum bignum rational) true)
(unary-table-set! &real? (fixnum bignum rational float) true)
(unary-table-set! &complex? (fixnum bignum rational float complex) true)
(unary-table-set! &number? (fixnum bignum rational float complex) true)
(unary-table-set! &exact? (fixnum bignum rational) true))
; The two parts of a complex number must have the same exactness.
(unary-table-set! &exact? (complex)
(lambda (z)
(real-part z)))
;----------------
; Imaginary operations.
(define-unary-opcode-extension real-part &real-part (lambda (x) x))
(define-unary-opcode-extension imag-part &imag-part (lambda (x) 0))
(unary-table-set! &real-part (complex not-a-number)
(lambda (x) unimplemented))
(unary-table-set! &imag-part (complex not-a-number)
(lambda (x) unimplemented))
;----------------
; Fractions
(define-unary-opcode-extension floor &floor)
(define-unary-opcode-extension numerator &numerator)
(define-unary-opcode-extension denominator &denominator)
(define (identity x) x)
(unary-table-set! &floor (fixnum bignum) identity)
(unary-table-set! &numerator (fixnum bignum) identity)
(unary-table-set! &denominator (fixnum bignum) (lambda (x) 1))
;----------------
; Square root.
(define-unary-opcode-extension sqrt &sqrt)
; The bignum code could whack this.
; The VM doesn't do sqrt for positive fixnums. I wonder why?
; For negative N, we lose if MAKE-RECTANGULAR loses.
(unary-table-set! &sqrt (fixnum bignum)
(lambda (n)
(if (>= n 0)
(non-negative-integer-sqrt n) ;Dubious (JAR)
(let ((s (non-negative-integer-sqrt (- n))))
(if (eq? s unimplemented)
s
(binary-dispatch &make-rectangular
0
s))))))
; Courtesy of Mr. Newton.
(define (non-negative-integer-sqrt n)
(if (<= n 1) ; for both 0 and 1
n
(let loop ((m (quotient n 2)))
(let ((m1 (quotient n m)))
(cond ((< m1 m)
(loop (quotient (+ m m1) 2)))
((= n (* m m))
m)
(else
unimplemented))))))
;----------------
; Make sure this has very low priority, so that it's only tried as a
; last resort.
;
; In fact, I'll comment it out completely. -RK
;(define-method &/ (m n)
; (if (and (integer? m) (integer? n))
; (if (= 0 (remainder m n))
; (quotient m n)
; (let ((z (abs (quotient n 2))))
; (set-exactness (quotient (if (< m 0)
; (- m z)
; (+ m z))
; n)
; #f)))
; (next-method)))
;----------------
; The rest have no useful defaults.
(define-unary-opcode-extension exact->inexact &exact->inexact)
(define-unary-opcode-extension inexact->exact &inexact->exact)
(define-binary-opcode-extension + &+)
(define-binary-opcode-extension - &-)
(define-binary-opcode-extension * &*)
(define-binary-opcode-extension / &/)
(define-binary-opcode-extension = &=)
(define-binary-opcode-extension < &<)
(define-binary-opcode-extension quotient "ient)
(define-binary-opcode-extension remainder &remainder)
(define-binary-opcode-extension make-rectangular &make-rectangular)
(define-unary-opcode-extension exp &exp)
(define-unary-opcode-extension log &log)
(define-unary-opcode-extension sin &sin)
(define-unary-opcode-extension cos &cos)
(define-unary-opcode-extension tan &tan)
(define-unary-opcode-extension asin &asin)
(define-unary-opcode-extension acos &acos)
(define-unary-opcode-extension atan &atan)
; >, <=, and >= are all extended using the table for <.
(extend-opcode! (enum op >)
(lambda (lose)
(lambda (reason arg0 arg1)
(let ((res (binary-dispatch &< arg1 arg0)))
(if (eq? res unimplemented)
(lose reason arg0 arg1)
res)))))
(extend-opcode! (enum op <=)
(lambda (lose)
(lambda (reason arg0 arg1)
(let ((res (binary-dispatch &< arg1 arg0)))
(if (eq? res unimplemented)
(lose reason arg0 arg1)
(not res))))))
(extend-opcode! (enum op >=)
(lambda (lose)
(lambda (reason arg0 arg1)
(let ((res (binary-dispatch &< arg0 arg1)))
(if (eq? res unimplemented)
(lose reason arg0 arg1)
(not res))))))
|