1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
; Part of Scheme 48 1.9. See file COPYING for notices and license.
; Authors: Richard Kelsey, Jonathan Rees, Martin Gasbichler, Mike Sperber
; Integer-only primitive operations
; These predicates are used to characterize the numeric representations that
; are implemented in the VM.
(define (unary-lose x)
(raise-exception wrong-type-argument 0 x))
(define (binary-lose x y)
(raise-exception wrong-type-argument 0 x y))
; They're all numbers, even if we can't handle them.
(define-primitive number? (any->)
(lambda (x)
(or (fixnum? x)
(bignum? x)
(ratnum? x)
(double? x)
(extended-number? x)))
return-boolean)
(define (integer? n)
(or (fixnum? n)
(bignum? n)))
(define (vm-integer? n)
(cond ((integer? n)
(goto return-boolean #t))
((extended-number? n)
(unary-lose n))
(else
(goto return-boolean #f))))
(define-primitive integer? (any->)
(lambda (n)
(cond ((or (fixnum? n)
(bignum? n))
(goto return-boolean #t))
((or (extended-number? n)
(double? n))
(unary-lose n))
(else
(goto return-boolean #f)))))
(define vm-number-predicate
(lambda (n)
(cond ((or (fixnum? n)
(bignum? n)
(ratnum? n)
(double? n))
(goto return-boolean #t))
((extended-number? n)
(unary-lose n))
(else
(goto return-boolean #f)))))
(define-primitive rational? (any->)
(lambda (n)
(cond ((or (fixnum? n)
(bignum? n)
(ratnum? n))
(goto return-boolean #t))
((double? n)
(goto return-boolean (flonum-rational? n)))
((extended-number? n)
(unary-lose n))
(else
(goto return-boolean #f)))))
(define-primitive real? (any->) vm-number-predicate)
(define-primitive complex? (any->) vm-number-predicate)
; These assume that ratnums and doubles aren't being used.
;(define-primitive integer? (any->) vm-integer?)
;(define-primitive rational? (any->) vm-integer?)
;(define-primitive real? (any->) vm-integer?)
;(define-primitive complex? (any->) vm-integer?)
;----------------
; A macro for defining primitives that only operate on integers.
(define-syntax define-integer-only
(syntax-rules ()
((define-integer-only (opcode arg) value)
(define-integer-only (opcode arg) (any->) value))
((define-integer-only (opcode arg0 arg1) value)
(define-integer-only (opcode arg0 arg1) (any-> any->) value))
((define-integer-only (opcode arg ...) specs value)
(define-primitive opcode specs
(lambda (arg ...)
(if (and (integer? arg) ...)
(goto return value)
(raise-exception wrong-type-argument 0 arg ...)))))))
; These primitives have a simple answer in the case of integers; for all others
; they punt to the run-time system.
(define-integer-only (exact? n) true)
(define-integer-only (real-part n) n)
(define-integer-only (imag-part n) (enter-fixnum 0))
(define-integer-only (floor n) n)
(define-integer-only (numerator n) n)
(define-integer-only (denominator n) (enter-fixnum 1))
(define-primitive angle (vm-integer->)
(lambda (n)
(if (if (fixnum? n)
(fixnum> n (enter-fixnum 0))
(bignum-nonnegative? n))
(goto return (enter-fixnum 0))
(unary-lose n))))
(define-primitive magnitude (vm-integer->)
(lambda (x)
(if (fixnum? x)
(goto return-integer (abs (extract-fixnum x)))
(goto return (integer-abs x)))))
; These all just raise an exception and let the run-time system do the work.
(define-syntax define-punter
(syntax-rules ()
((define-punter opcode)
(define-primitive opcode (any->) unary-lose))))
(define-punter exact->inexact)
(define-punter inexact->exact)
(define-punter exp)
(define-punter log)
(define-punter sin)
(define-punter cos)
(define-punter tan)
(define-punter asin)
(define-punter acos)
(define-punter sqrt)
(define-syntax define-punter2
(syntax-rules ()
((define-punter2 opcode)
(define-primitive opcode (any-> any->) binary-lose))))
(define-punter atan1)
(define-punter2 atan2)
(define-punter2 make-polar)
(define-punter2 make-rectangular)
(define-syntax define-fixnum-or-integer
(syntax-rules ()
((define-fixnum-or-integer (opcode arg) fixnum-val integer-val)
(define-fixnum-or-integer (opcode arg)
(any->)
fixnum-val integer-val))
((define-fixnum-or-integer (opcode arg0 arg1) fixnum-val integer-val)
(define-fixnum-or-integer (opcode arg0 arg1)
(any-> any->)
fixnum-val integer-val))
((define-fixnum-or-integer (opcode arg ...) specs fixnum-val integer-val)
(define-primitive opcode specs
(lambda (arg ...)
(if (and (fixnum? arg) ...)
(goto return fixnum-val)
(if (and (integer? arg) ...)
(goto return integer-val)
(raise-exception wrong-type-argument 0 arg ...))))))))
(define-syntax define-fixnum-or-integer-or-float
(syntax-rules ()
((define-fixnum-or-integer (opcode arg) fixnum-val integer-val float-val)
(define-fixnum-or-integer (opcode arg) (any->)
fixnum-val integer-val float-val))
((define-fixnum-or-integer-or-float (opcode arg0 arg1)
fixnum-val integer-val float-val)
(define-fixnum-or-integer-or-float (opcode arg0 arg1)
(any-> any->)
fixnum-val integer-val float-val))
((define-fixnum-or-integer-or-float (opcode arg ...) specs
fixnum-val integer-val float-val)
(define-primitive opcode specs
(lambda (arg ...)
(cond ((and (fixnum? arg) ...)
(goto return fixnum-val))
((and (integer? arg) ...)
(goto return integer-val))
((and (double? arg) ...)
(goto return float-val))
(else
(raise-exception wrong-type-argument 0 arg ...))))))))
(define-fixnum-or-integer-or-float (+ x y)
(enter-integer (+ (extract-fixnum x)
(extract-fixnum y))
(ensure-space long-as-integer-size))
(integer-add x y)
(flonum-add x y))
(define-fixnum-or-integer-or-float (- x y)
(enter-integer (- (extract-fixnum x)
(extract-fixnum y))
(ensure-space long-as-integer-size))
(integer-subtract x y)
(flonum-subtract x y))
(define (return-integer x)
(goto return (enter-integer x (ensure-space long-as-integer-size))))
(define-primitive * (any-> any->)
(lambda (x y)
(cond ((and (fixnum? x) (fixnum? y))
(goto multiply-carefully x y
return-integer
(lambda (x y)
(goto return (integer-multiply x y)))))
((and (integer? x) (integer? y))
(goto return (integer-multiply x y)))
((and (double? x) (double? y))
(goto return (flonum-multiply x y)))
(else
(binary-lose x y)))))
;----------------------------------------------------------------
; division and friends
(define-primitive / (any-> any->)
(lambda (x y)
(cond ((= y (enter-fixnum 0))
(binary-lose x y))
((and (fixnum? x)
(fixnum? y))
(divide-carefully x y return-integer
binary-lose))
((and (integer? x)
(integer? y))
(call-with-values
(lambda ()
(integer-divide x y))
(lambda (div-by-zero? quot rem x y)
(if (and (not div-by-zero?)
(fixnum? rem)
(= (enter-fixnum 0) rem))
(goto return quot)
(binary-lose x y)))))
((and (double? x) (double? y))
(goto return (flonum-divide x y)))
(else
(binary-lose x y)))))
(define (divide-action fixnum-op integer-op)
(lambda (x y)
(cond ((= y (enter-fixnum 0))
(binary-lose x y))
((and (fixnum? x)
(fixnum? y))
(fixnum-op x
y
return
(lambda (x y)
(goto return (integer-op x y)))))
((and (integer? x)
(integer? y))
(goto return
(integer-op x y)))
(else
(binary-lose x y)))))
(let ((action (divide-action quotient-carefully integer-quotient)))
(define-primitive quotient (any-> any->) action))
(let ((action (divide-action remainder-carefully integer-remainder)))
(define-primitive remainder (any-> any->) action))
;----------------------------------------------------------------
; comparisons
(define-syntax define-comparison
(syntax-rules ()
((define-comparison op fixnum integer float)
(define-fixnum-or-integer-or-float (op x y)
(enter-boolean (fixnum x y))
(enter-boolean (integer x y))
(enter-boolean (float x y))))))
(define-comparison = fixnum= integer= flonum=)
(define-comparison < fixnum< integer< flonum<)
(define-comparison > fixnum> integer> flonum>)
(define-comparison <= fixnum<= integer<= flonum<=)
(define-comparison >= fixnum>= integer>= flonum>=)
;----------------------------------------------------------------
; bitwise operations
; Shifting left by a bignum number of bits loses; shifting right gives 0 or
; -1 depending on the sign of the first argument.
(define-primitive arithmetic-shift (any-> any->)
(lambda (x y)
(cond ((bignum? y)
(goto shift-by-bignum x y))
((not (fixnum? y))
(binary-lose x y))
((fixnum? x)
(goto shift-carefully x y return-integer
(lambda (x y)
(goto return (integer-arithmetic-shift x y)))))
((bignum? x)
(goto return (integer-arithmetic-shift x y)))
(else
(binary-lose x y)))))
(define (shift-by-bignum x y)
(cond ((bignum-positive? y)
(raise-exception arithmetic-overflow 0 x y))
((fixnum? x)
(goto return
(if (fixnum<= (enter-fixnum 0)
x)
(enter-fixnum 0)
(enter-fixnum -1))))
((bignum? x)
(goto return
(if (bignum-positive? x)
(enter-fixnum 0)
(enter-fixnum -1))))
(else
(raise-exception arithmetic-overflow 0 x y))))
(define-fixnum-or-integer (bitwise-not x)
(fixnum-bitwise-not x)
(integer-bitwise-not x))
(define-fixnum-or-integer (bit-count x)
(fixnum-bit-count x)
(integer-bit-count x))
(define-fixnum-or-integer (bitwise-and x y)
(fixnum-bitwise-and x y)
(integer-bitwise-and x y))
(define-fixnum-or-integer (bitwise-ior x y)
(fixnum-bitwise-ior x y)
(integer-bitwise-ior x y))
(define-fixnum-or-integer (bitwise-xor x y)
(fixnum-bitwise-xor x y)
(integer-bitwise-xor x y))
|