File: integer-op.scm

package info (click to toggle)
scheme48 1.9.2-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 18,232 kB
  • sloc: lisp: 88,907; ansic: 87,519; sh: 3,224; makefile: 771
file content (350 lines) | stat: -rw-r--r-- 9,998 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Richard Kelsey, Jonathan Rees, Martin Gasbichler, Mike Sperber

; Integer-only primitive operations

; These predicates are used to characterize the numeric representations that
; are implemented in the VM.

(define (unary-lose x)
  (raise-exception wrong-type-argument 0 x))

(define (binary-lose x y)
  (raise-exception wrong-type-argument 0 x y))

; They're all numbers, even if we can't handle them.

(define-primitive number? (any->)
  (lambda (x)
    (or (fixnum? x)
	(bignum? x)
	(ratnum? x)
	(double? x)
	(extended-number? x)))
  return-boolean)

(define (integer? n)
  (or (fixnum? n)
      (bignum? n)))
  
(define (vm-integer? n)
  (cond ((integer? n)
	 (goto return-boolean #t))
	((extended-number? n)
	 (unary-lose n))
	(else
	 (goto return-boolean #f))))

(define-primitive integer?  (any->)
  (lambda (n)
    (cond ((or (fixnum? n)
	       (bignum? n))
	       (goto return-boolean #t))
	  ((or (extended-number? n)
	       (double? n))
	   (unary-lose n))
	  (else
	   (goto return-boolean #f)))))

(define vm-number-predicate
  (lambda (n)
    (cond ((or (fixnum? n)
	       (bignum? n)
	       (ratnum? n)
	       (double? n))
	   (goto return-boolean #t))
	  ((extended-number? n)
	   (unary-lose n))
	  (else
	   (goto return-boolean #f)))))

(define-primitive rational? (any->)
  (lambda (n)
    (cond ((or (fixnum? n)
	       (bignum? n)
	       (ratnum? n))
	   (goto return-boolean #t))
	  ((double? n)
	   (goto return-boolean (flonum-rational? n)))
	  ((extended-number? n)
	   (unary-lose n))
	  (else
	   (goto return-boolean #f)))))

(define-primitive real?     (any->) vm-number-predicate)
(define-primitive complex?  (any->) vm-number-predicate)

; These assume that ratnums and doubles aren't being used.

;(define-primitive integer?  (any->) vm-integer?)
;(define-primitive rational? (any->) vm-integer?)
;(define-primitive real?     (any->) vm-integer?)
;(define-primitive complex?  (any->) vm-integer?)

;----------------
; A macro for defining primitives that only operate on integers.

(define-syntax define-integer-only
  (syntax-rules ()
    ((define-integer-only (opcode arg) value)
     (define-integer-only (opcode arg) (any->) value))
    ((define-integer-only (opcode arg0 arg1) value)
     (define-integer-only (opcode arg0 arg1) (any-> any->) value))
    ((define-integer-only (opcode arg ...) specs value)    
     (define-primitive opcode specs
       (lambda (arg ...)
	 (if (and (integer? arg) ...)
	     (goto return value)
	     (raise-exception wrong-type-argument 0 arg ...)))))))

; These primitives have a simple answer in the case of integers; for all others
; they punt to the run-time system.

(define-integer-only (exact?      n) true)
(define-integer-only (real-part   n) n)
(define-integer-only (imag-part   n) (enter-fixnum 0))
(define-integer-only (floor       n) n)
(define-integer-only (numerator   n) n)
(define-integer-only (denominator n) (enter-fixnum 1))

(define-primitive angle (vm-integer->)
  (lambda (n)
    (if (if (fixnum? n)
	    (fixnum> n (enter-fixnum 0))
	    (bignum-nonnegative? n))
	(goto return (enter-fixnum 0))
	(unary-lose n))))

(define-primitive magnitude (vm-integer->) 
  (lambda (x)
    (if (fixnum? x)
	(goto return-integer (abs (extract-fixnum x)))
	(goto return (integer-abs x)))))

; These all just raise an exception and let the run-time system do the work.

(define-syntax define-punter
  (syntax-rules ()
    ((define-punter opcode)
     (define-primitive opcode (any->) unary-lose))))

(define-punter exact->inexact)
(define-punter inexact->exact)
(define-punter exp)
(define-punter log)
(define-punter sin)
(define-punter cos)
(define-punter tan)
(define-punter asin)
(define-punter acos)
(define-punter sqrt)

(define-syntax define-punter2
  (syntax-rules ()
    ((define-punter2 opcode)
     (define-primitive opcode (any-> any->) binary-lose))))

(define-punter  atan1)
(define-punter2 atan2)
(define-punter2 make-polar)
(define-punter2 make-rectangular)

(define-syntax define-fixnum-or-integer
  (syntax-rules ()
    ((define-fixnum-or-integer (opcode arg) fixnum-val integer-val)
     (define-fixnum-or-integer (opcode arg)
       (any->)
       fixnum-val integer-val))
    ((define-fixnum-or-integer (opcode arg0 arg1) fixnum-val integer-val)
     (define-fixnum-or-integer (opcode arg0 arg1)
       (any-> any->)
       fixnum-val integer-val))
    ((define-fixnum-or-integer (opcode arg ...) specs fixnum-val integer-val)
     (define-primitive opcode specs
       (lambda (arg ...)
	 (if (and (fixnum? arg) ...)
	     (goto return fixnum-val)
	     (if (and (integer? arg) ...)
		 (goto return integer-val)
		 (raise-exception wrong-type-argument 0 arg ...))))))))

(define-syntax define-fixnum-or-integer-or-float
  (syntax-rules ()
    ((define-fixnum-or-integer (opcode arg) fixnum-val integer-val float-val)
     (define-fixnum-or-integer (opcode arg) (any->)
       fixnum-val integer-val float-val))
    ((define-fixnum-or-integer-or-float (opcode arg0 arg1)
       fixnum-val integer-val float-val)
     (define-fixnum-or-integer-or-float (opcode arg0 arg1)
       (any-> any->)
       fixnum-val integer-val float-val))
    ((define-fixnum-or-integer-or-float (opcode arg ...) specs
       fixnum-val integer-val float-val)
     (define-primitive opcode specs
       (lambda (arg ...)
	 (cond ((and (fixnum? arg) ...)
		(goto return fixnum-val))
	       ((and (integer? arg) ...)
		(goto return integer-val))
	       ((and (double? arg) ...)
		(goto return float-val))
	       (else
		(raise-exception wrong-type-argument 0 arg ...))))))))

(define-fixnum-or-integer-or-float (+ x y) 
  (enter-integer (+ (extract-fixnum x) 
                    (extract-fixnum y))
                 (ensure-space long-as-integer-size))
  (integer-add x y)
  (flonum-add x y))

(define-fixnum-or-integer-or-float (- x y) 
  (enter-integer (- (extract-fixnum x) 
		    (extract-fixnum y))
		 (ensure-space long-as-integer-size))
  (integer-subtract x y)
  (flonum-subtract x y))

(define (return-integer x)
  (goto return (enter-integer x (ensure-space long-as-integer-size))))

(define-primitive * (any-> any->)
  (lambda (x y)
    (cond ((and (fixnum? x) (fixnum? y))
	   (goto multiply-carefully x y 
		 return-integer
		 (lambda (x y)
		   (goto return (integer-multiply x y)))))
	  ((and (integer? x) (integer? y))
	   (goto return (integer-multiply x y)))
	  ((and (double? x) (double? y))
	   (goto return (flonum-multiply x y)))
	  (else
	   (binary-lose x y)))))

;----------------------------------------------------------------
; division and friends

(define-primitive / (any-> any->)
  (lambda (x y)
    (cond ((= y (enter-fixnum 0))
	   (binary-lose x y))
          ((and (fixnum? x)
		(fixnum? y))
	   (divide-carefully x y return-integer 
			     binary-lose))
	  ((and (integer? x)
		(integer? y))
	   (call-with-values
	    (lambda ()
	      (integer-divide x y))
	    (lambda (div-by-zero? quot rem x y)
	      (if (and (not div-by-zero?)
		       (fixnum? rem)
		       (= (enter-fixnum 0) rem))
		  (goto return quot)
		  (binary-lose x y)))))
	  ((and (double? x) (double? y))
	   (goto return (flonum-divide x y)))
	  (else
	   (binary-lose x y)))))

(define (divide-action fixnum-op integer-op)
  (lambda (x y)
    (cond ((= y (enter-fixnum 0))
	   (binary-lose x y))
	  ((and (fixnum? x)
		(fixnum? y))
	   (fixnum-op x
		      y
		      return 
		      (lambda (x y)
			(goto return (integer-op x y)))))
	  ((and (integer? x)
		(integer? y))
	   (goto return
		 (integer-op x y)))
	  (else
	   (binary-lose x y)))))

(let ((action (divide-action quotient-carefully integer-quotient)))
  (define-primitive quotient (any-> any->) action))

(let ((action (divide-action remainder-carefully integer-remainder)))
  (define-primitive remainder (any-> any->) action))

;----------------------------------------------------------------
; comparisons

(define-syntax define-comparison
  (syntax-rules ()
    ((define-comparison op fixnum integer float)
     (define-fixnum-or-integer-or-float (op x y)
       (enter-boolean (fixnum x y))
       (enter-boolean (integer x y))
       (enter-boolean (float x y))))))

(define-comparison =  fixnum=  integer=  flonum=)     
(define-comparison <  fixnum<  integer<  flonum<)     
(define-comparison >  fixnum>  integer>  flonum>)     
(define-comparison <= fixnum<= integer<= flonum<=)     
(define-comparison >= fixnum>= integer>= flonum>=)     

;----------------------------------------------------------------
; bitwise operations

; Shifting left by a bignum number of bits loses; shifting right gives 0 or
; -1 depending on the sign of the first argument.

(define-primitive arithmetic-shift (any-> any->)
  (lambda (x y)
    (cond ((bignum? y)
	   (goto shift-by-bignum x y))
	  ((not (fixnum? y))
	   (binary-lose x y))
	  ((fixnum? x)
	   (goto shift-carefully x y return-integer
		 (lambda (x y)
		   (goto return (integer-arithmetic-shift x y)))))
	  ((bignum? x) 
	   (goto return (integer-arithmetic-shift x y)))
	  (else
	   (binary-lose x y)))))

(define (shift-by-bignum x y)	  
  (cond ((bignum-positive? y)
	 (raise-exception arithmetic-overflow 0 x y))
	((fixnum? x)
	 (goto return
	       (if (fixnum<= (enter-fixnum 0)
			     x)
		   (enter-fixnum 0)
		   (enter-fixnum -1))))
	((bignum? x)
	 (goto return
	       (if (bignum-positive? x)
		   (enter-fixnum 0)
		   (enter-fixnum -1))))
	(else
	 (raise-exception arithmetic-overflow 0 x y))))

(define-fixnum-or-integer (bitwise-not x)
  (fixnum-bitwise-not x)
  (integer-bitwise-not x))

(define-fixnum-or-integer (bit-count x)
  (fixnum-bit-count x)
  (integer-bit-count x))

(define-fixnum-or-integer (bitwise-and x y)
  (fixnum-bitwise-and x y)
  (integer-bitwise-and x y))

(define-fixnum-or-integer (bitwise-ior x y)
  (fixnum-bitwise-ior x y)
  (integer-bitwise-ior x y))

(define-fixnum-or-integer (bitwise-xor x y)
  (fixnum-bitwise-xor x y)
  (integer-bitwise-xor x y))