1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
; Part of Scheme 48 1.9. See file COPYING for notices and license.
; Authors: Richard Kelsey, Jonathan Rees, Martin Gasbichler, Mike Sperber
; Code to handle the calling and return protocols.
; *VAL* is the procedure, the arguments are on stack, and the next byte
; is the number of arguments (all of which are on the stack). This checks
; that *VAL* is in fact a closure and for the common case of a non-n-ary
; procedure that has few arguments. This case is handled directly and all
; others are passed off to PLAIN-PROTOCOL-MATCH.
(define-opcode call
(let ((stack-arg-count (code-byte 2)))
(make-continuation-on-stack (address+ *code-pointer* (code-offset 0))
stack-arg-count)
(goto do-call stack-arg-count)))
(define-opcode tail-call
(let ((stack-arg-count (code-byte 0)))
(move-args-above-cont! stack-arg-count)
(goto do-call stack-arg-count)))
(define-opcode known-call
(let ((stack-arg-count (code-byte 2))
(skip (if (= 0 (code-byte 3)) 2 4)))
(make-continuation-on-stack (address+ *code-pointer* (code-offset 0))
stack-arg-count)
(goto do-known-call stack-arg-count skip)))
(define-opcode known-tail-call
(let ((stack-arg-count (code-byte 0))
(skip (if (= 0 (code-byte 3)) 2 4)))
(move-args-above-cont! stack-arg-count)
(goto do-known-call stack-arg-count skip)))
; questionable
(define-opcode big-known-call
(let ((stack-arg-count (code-offset 2))
(skip (if (= 0 (code-byte 4)) 2 4)))
(maybe-make-continuation stack-arg-count)
(goto do-known-call stack-arg-count skip)))
(define (do-known-call stack-arg-count skip)
(let* ((template (closure-template *val*))
(code (template-code template)))
(goto run-body-with-default-space code skip template)))
(define (do-call stack-arg-count)
(if (closure? *val*)
(let* ((template (closure-template *val*))
(code (template-code template))
(protocol (code-vector-ref code 1)))
(cond ((= protocol stack-arg-count)
(goto run-body-with-default-space code 2 template))
((= (native->byte-protocol protocol)
stack-arg-count)
(goto call-native-code-with-default-space 2))
(else
(goto plain-protocol-match stack-arg-count))))
(goto application-exception
(enum exception bad-procedure)
stack-arg-count null 0)))
;----------------------------------------------------------------
; Native protocols have the high bit set.
(define (native-protocol? protocol)
(< 127 protocol))
(define (native->byte-protocol protocol)
(bitwise-and protocol 127))
(define (byte->native-protocol protocol)
(bitwise-ior protocol 128))
(define (call-native-code-with-default-space protocol-skip)
(if (and (ensure-default-procedure-space!)
(pending-interrupt?))
(goto handle-native-interrupt protocol-skip)
(goto really-call-native-code protocol-skip)))
(define (call-native-code protocol-skip needed-stack-space)
(if (and (ensure-stack-space! needed-stack-space)
(pending-interrupt?))
(goto handle-native-interrupt protocol-skip)
(goto really-call-native-code protocol-skip)))
(define (really-call-native-code protocol-skip)
(goto post-native-dispatch (s48-call-native-procedure *val* protocol-skip)))
(define s48-*native-protocol*)
; The external code just sets the C variable directly, but we export this to
; let the Pre-Scheme compiler know that someone, somewhere, does a set.
(define (s48-set-native-protocol! protocol)
(set! s48-*native-protocol* protocol))
(define (post-native-dispatch tag)
; (write-string "P" (current-error-port))
; (write-integer tag (current-error-port))
(let loop ((tag tag))
(case tag
((0)
(goto return-values s48-*native-protocol* null 0))
((1)
(goto perform-application s48-*native-protocol*))
((2)
(let* ((template (pop))
(return-address (pop)))
(cond ((pending-interrupt?)
;(write-string "interrupt is pending" (current-error-port))
(goto handle-native-poll template return-address))
(else
;(write-string "no interrupt is pending" (current-error-port))
(loop (s48-jump-native return-address template))))))
((3)
(error "unexpected native return value" tag))
((4)
(goto interpret *code-pointer*))
((5)
(goto do-apply-with-native-cont s48-*native-protocol* (pop)))
((6)
(raise-exception trap 0 *val*))
(else
(error "unexpected native return value" tag)))))
;; Not used for now
(define (push-native-exception-continuation)
(push-continuation! (code+pc->code-pointer *native-exception-return-code*
return-code-pc)))
;----------------------------------------------------------------
; As above but with a two-byte argument count. The tail and not-tail calls
; are both done using the same opcode (which is not done above for speed in
; the tail case; this optimization needs to be tested for effectiveness).
(define-opcode big-call
(let ((stack-arg-count (code-offset 2)))
(maybe-make-continuation stack-arg-count)
(goto perform-application stack-arg-count)))
; A number of opcodes that make calls use this. We get a the offset of the
; return address and then either add it as a new continuation below the current
; arguments or, for tail calls, move those arguments above the current
; continuation.
(define (maybe-make-continuation stack-arg-count)
(let ((return-pointer-offset (code-offset 0)))
(if (= return-pointer-offset 0)
(move-args-above-cont! stack-arg-count)
(make-continuation-on-stack (address+ *code-pointer*
return-pointer-offset)
stack-arg-count))))
(define (maybe-make-native-continuation stack-arg-count maybe-cont)
(if (= maybe-cont 0)
(move-args-above-cont! stack-arg-count)
(make-continuation-on-stack (integer->address maybe-cont)
stack-arg-count)))
; Call a template instead of a procedure. This is currently used for
; stringing together code for top-level forms and doing the same thing for
; the initialization code made by the static linker.
;
; call-template <return-offset> <template-index> <index-within-template> <nargs>
(define-opcode call-template
(let* ((template (get-literal 2))
(code (template-code template))
(nargs (code-byte 6)))
(maybe-make-continuation nargs)
(cond ((= nargs (code-vector-ref code 1))
(goto run-body-with-default-space code 2 template))
((and (= big-stack-protocol (code-vector-ref code 1))
(= nargs
(code-vector-ref code (- (code-vector-length code) 3))))
(goto run-body
code
2
template
(code-vector-ref16 code (- (code-vector-length code) 2))))
(else
(raise-exception wrong-type-argument 7 template)))))
; The following is used only for experiments. The compiler does not use it.
;(define-opcode goto-template
; (set-code-pointer! (template-code template) 0)
; (goto interpret *code-pointer*))
; APPLY: *VAL* is the procedure, the rest-arg list is on top of the stack,
; the next two bytes are the number of stack arguments below the rest-args list.
; We check that the rest-arg list is a proper list and let
; PERFORM-APPLICATION-WITH-REST-LIST do the work.
(define-opcode apply
(let ((list-args (pop))
(stack-nargs (code-offset 2)))
(receive (okay? length)
(okay-argument-list list-args)
(if okay?
(begin
(maybe-make-continuation stack-nargs)
(goto perform-application-with-rest-list
stack-nargs
list-args
length))
(let ((args (pop-args->list*+gc list-args stack-nargs)))
(raise-exception wrong-type-argument -1 *val* args))))))
(define (do-apply-with-native-cont stack-nargs maybe-cont)
(let ((list-args (pop)))
(receive (okay? length)
(okay-argument-list list-args)
(if okay?
(begin
(maybe-make-native-continuation stack-nargs maybe-cont)
(goto perform-application-with-rest-list
stack-nargs
list-args
length))
(let ((args (pop-args->list*+gc list-args stack-nargs)))
(raise-exception wrong-type-argument -1 *val* args))))))
; This is only used for the closed-compiled version of APPLY.
;
; Stack = arg0 arg1 ... argN rest-list N+1 total-arg-count
; Arg0 is the procedure.
;
; Note that the rest-list on the stack is the rest-list passed to APPLY
; procedure and not the rest-list to be used in the call to the procedure.
; Consider (APPLY APPLY (LIST LIST '(1 2 3))), where the initial APPLY
; is not done in-line. The stack for the inner call to APPLY will be
; [(<list-procedure> (1 2 3)), 1, 2], whereas for
; (APPLY APPLY LIST 1 '(2 (3))) the stack will be
; [<list-procedure>, 1, (2 (3)), 2, 4].
;
; We grab the counts and the procedure and copy the rest of the stack arguments
; down to make us properly tail-recursive. Then we get the true stack-arg count
; and list args and again let PERFORM-APPLICATION-WITH-REST-LIST do the work.
(define-opcode closed-apply
(let* ((nargs (extract-fixnum (pop)))
(stack-nargs (extract-fixnum (pop))))
(set! *val* (stack-ref stack-nargs)) ; proc in *VAL*
(move-args-above-cont! stack-nargs)
(receive (okay? stack-arg-count list-args list-arg-count)
(get-closed-apply-args nargs stack-nargs)
(if okay?
(begin
(goto perform-application-with-rest-list
stack-arg-count
list-args
list-arg-count))
(let ((args (pop-args->list*+gc list-args stack-arg-count)))
(raise-exception wrong-type-argument -1 *val* args))))))
; Stack = arg0 arg1 ... argN rest-list
; This needs to get the last argument, which is either argN or the last
; element of the rest-list, and splice it into the rest of the arguments.
; If the rest-list is null, then argN is the last argument and becomes the
; new rest-list. If the rest-list is non-null, then we go to the end, get
; the list there, and splice the two together to make a single list.
; This only happens if someone does (APPLY APPLY ...).
(define (get-closed-apply-args nargs stack-nargs)
(let ((rest-list (pop)))
(receive (list-args stack-nargs)
(cond ((vm-eq? rest-list null)
(values (pop)
(- stack-nargs 2))) ; drop proc and final list
((vm-eq? (vm-cdr rest-list) null)
(values (vm-car rest-list)
(- stack-nargs 1))) ; drop proc
(else
(let* ((penultimate-cdr (penultimate-cdr rest-list))
(list-args (vm-car (vm-cdr penultimate-cdr))))
(vm-set-cdr! penultimate-cdr list-args)
(values rest-list
(- stack-nargs 1))))) ; drop proc
(receive (okay? list-arg-count)
(okay-argument-list list-args)
(values okay?
stack-nargs
list-args
list-arg-count)))))
; If LIST is a proper list (the final cdr is null) then we return #T and the
; length of the list, otherwise we return #F.
(define (okay-argument-list list)
(let loop ((fast list) (len 0) (slow list) (move-slow? #f))
(cond ((vm-eq? null fast)
(values #t len))
((or (not (vm-pair? fast)))
(values #f 0))
((not move-slow?)
(loop (vm-cdr fast) (+ len 1) slow #t))
((vm-eq? fast slow)
(values #f 0))
(else
(loop (vm-cdr fast) (+ len 1) (vm-cdr slow) #f)))))
; Return the second-to-last cdr of LIST.
(define (penultimate-cdr list)
(let loop ((list (vm-cdr (vm-cdr list))) (follower list))
(if (eq? null list)
follower
(loop (vm-cdr list) (vm-cdr follower)))))
;----------------
; Call the procedure in *VAL*. STACK-ARG-COUNT is the number of arguments
; on the stack, LIST-ARGS is a list of LIST-ARG-COUNT additional arguments.
;
; The CLOSURE? and protocol checks must come before the interrupt check because
; the interrupt code assumes that the correct template is in place. This delays
; the handling of interrupts by a few instructions; it shouldn't matter.
(define (perform-application stack-arg-count)
(if (closure? *val*)
(goto plain-protocol-match stack-arg-count)
(goto application-exception
(enum exception bad-procedure)
stack-arg-count null 0)))
(define (perform-application-with-rest-list stack-arg-count
list-args list-arg-count)
(cond ((= 0 list-arg-count)
(goto perform-application stack-arg-count))
((closure? *val*)
(goto list-protocol-match
stack-arg-count list-args list-arg-count))
(else
(goto application-exception
(enum exception bad-procedure)
stack-arg-count list-args list-arg-count))))
(define (wrong-nargs stack-arg-count list-args list-arg-count)
(goto application-exception
(enum exception wrong-number-of-arguments)
stack-arg-count list-args list-arg-count))
; The main protocol-matching function takes as an argument a token indicating
; if the called-value is a handler and if so, what kind. A non-negative value
; is the opcode whose exception handler is begin called. -1 means that the
; procedure is not a handler. Any other negative value indicates that the
; procedure is an interrupt handler. The interrupt is (- -2 token).
(define not-a-handler -1)
(define (call-exception-handler stack-arg-count opcode)
(goto real-protocol-match
stack-arg-count
null
0
opcode))
(define (call-interrupt-handler stack-arg-count interrupt)
(goto real-protocol-match
stack-arg-count
null
0
(- -2 interrupt)))
; Check that the arguments match those needed by *VAL*, which is a closure,
; moving arguments to or from the stack if necessary, and ensure that there
; is enough stack space for the procedure. The environment needed by *VAL*
; is created.
(define (plain-protocol-match stack-arg-count)
(goto real-protocol-match stack-arg-count null 0 not-a-handler))
(define (list-protocol-match stack-arg-count list-args list-arg-count)
(goto real-protocol-match
stack-arg-count
list-args
list-arg-count
not-a-handler))
(define (real-protocol-match stack-arg-count
list-args
list-arg-count
handler-tag)
(let ((code (template-code (closure-template *val*)))
(total-arg-count (+ stack-arg-count list-arg-count))
(lose (lambda ()
(cond ((= handler-tag not-a-handler)
(goto wrong-nargs
stack-arg-count list-args list-arg-count))
((<= 0 handler-tag)
(error "wrong number of arguments to exception handler"
handler-tag))
(else
(error "wrong number of arguments to interrupt handler"
(- -2 handler-tag)))))))
(assert (= (enum op protocol)
(code-vector-ref code 0)))
(let loop ((protocol (code-vector-ref code 1))
(stack-space default-stack-space)
(native? #f))
(let ((win (lambda (skip)
(if native?
(goto call-native-code skip stack-space)
(let ((template (closure-template *val*)))
(goto run-body (template-code template)
skip
template
stack-space))))))
(let ((fixed-match (lambda (wants skip)
(if (= wants total-arg-count)
(begin
(if (not (= 0 list-arg-count))
(begin
(push-list list-args list-arg-count)
(unspecific))) ; avoid type problem
(win skip))
(lose))))
;; N-ary procedure.
(n-ary-match (lambda (wants-stack-args skip)
(if (<= wants-stack-args total-arg-count)
(begin
(rest-list-setup+gc wants-stack-args
stack-arg-count
list-args
list-arg-count)
(win skip))
(lose))))
;; If there are > 2 args the top two are pushed on the stack.
;; Then the remaining list, the total number of arguments, and
;; the number on the stack are pushed on the stack.
(args+nargs-match (lambda (skip)
(let ((final-stack-arg-count
(if (< total-arg-count 3)
total-arg-count
(max 2 stack-arg-count))))
(rest-list-setup+gc (max stack-arg-count
final-stack-arg-count)
stack-arg-count
list-args
list-arg-count)
(push (enter-fixnum final-stack-arg-count))
(push (enter-fixnum total-arg-count))
(win skip)))))
(cond ((= protocol nary-dispatch-protocol)
(cond ((< total-arg-count 3)
(let ((skip (code-vector-ref code (+ 3 total-arg-count))))
(if (= 0 skip)
(lose)
(begin
(push-list list-args list-arg-count)
(goto run-nary-dispatch-body code skip)))))
((= 0 (code-vector-ref code 2))
(lose))
(else
(args+nargs-match 6)))) ; leave env/template
((<= protocol maximum-stack-args)
(fixed-match protocol 2))
((= protocol two-byte-nargs+list-protocol)
(n-ary-match (code-vector-ref16 code 2) 4))
((= protocol args+nargs-protocol)
(if (>= total-arg-count
(code-vector-ref code 2))
(args+nargs-match 3)
(lose)))
((native-protocol? protocol)
(loop (native->byte-protocol protocol) stack-space #t))
((= protocol two-byte-nargs-protocol)
(fixed-match (code-vector-ref16 code 2) 4))
((= protocol big-stack-protocol)
(let ((length (code-vector-length code)))
(loop (code-vector-ref code (- length 3))
(code-vector-ref16 code (- length 2))
native?)))
(else
(error "unknown protocol" protocol)
(lose))))))))
; Adjusts the number of stack arguments to be WANTS-STACK-ARGS by moving
; arguments between the stack and LIST-ARGS as necessary. Whatever is left
; of LIST-ARGS is then copied and the copy is pushed onto the stack.
(define (rest-list-setup+gc wants-stack-args stack-arg-count
list-args list-arg-count)
(cond ((= stack-arg-count wants-stack-args)
(push (copy-list*+gc list-args list-arg-count)))
((< stack-arg-count wants-stack-args)
(let ((count (- wants-stack-args stack-arg-count)))
(push (copy-list*+gc (push-list list-args count)
(- list-arg-count count)))))
(else ; (> stack-arg-count wants-stack-args)
(let ((count (- stack-arg-count wants-stack-args)))
(push (pop-args->list*+gc (copy-list*+gc list-args list-arg-count)
count))))))
; Raise an exception, passing to it a list of the arguments on the stack and
; in LIST-ARGS.
(define (application-exception exception
stack-arg-count list-args list-arg-count)
(let ((args (pop-args->list*+gc (copy-list*+gc list-args list-arg-count)
stack-arg-count)))
(raise-exception* exception -1 *val* args))) ; no next opcode
;----------------------------------------------------------------
(define (run-body-with-default-space code used template)
(real-run-body-with-default-space code used (+ used 1) template))
(define (run-nary-dispatch-body code start-pc)
(real-run-body-with-default-space code 6 start-pc (closure-template *val*)))
(define (real-run-body-with-default-space code env/temp-offset used template)
(env-and-template-setup (code-vector-ref code env/temp-offset) template)
(set-code-pointer! code used)
(if (and (ensure-default-procedure-space!)
(pending-interrupt?))
(goto handle-interrupt)
(goto interpret *code-pointer*)))
(define (run-body code used template needed-stack-space)
(env-and-template-setup (code-vector-ref code used) template)
(set-code-pointer! code (+ used 1))
(if (and (ensure-stack-space! needed-stack-space)
(pending-interrupt?))
(goto handle-interrupt)
(goto interpret *code-pointer*)))
(define (env-and-template-setup spec template)
(cond ((= #b011 spec)
(push (closure-env *val*))
(push template))
((= #b001 spec)
(push template))
((= #b010 spec)
(push (closure-env *val*)))
;; the next two are for the output of the optimizer,
;; for closures that have the environment merged in
((= #b100 spec)
(push *val*)) ; closure
((= #b110 spec)
(push *val*)
(push (closure-env *val*)))
;; the following probably won't occur in the wild
((= #b101 spec)
(push *val*)
(push template))
((= #b111 spec)
(push *val*)
(push (closure-env *val*))
(push template))))
;----------------------------------------------------------------
; Get a two-byte number from CODE-VECTOR.
(define (code-vector-ref16 code-vector index)
(let ((high (code-vector-ref code-vector index)))
(adjoin-bits high
(code-vector-ref code-vector (+ index 1))
bits-used-per-byte)))
(define (code-pointer-ref code-pointer index)
(fetch-byte (address+ code-pointer index)))
(define (code-pointer-ref16 code-pointer index)
(let ((high (code-pointer-ref code-pointer index)))
(adjoin-bits high
(code-pointer-ref code-pointer (+ index 1))
bits-used-per-byte)))
;----------------
; Returns - these use many of the same protocols.
; Invoke the contination, if it can handle a single value. There are four
; protocols that are okay:
;
; 1, ignore-values
; We just leave *VAL* as is and return.
; bottom-of-stack
; Real continuation is either in the heap or #F (if we are really at the
; bottom of the stack). We get the real continuation and either try again
; or return from the VM.
; two-byte-nargs+list
; Continuation is n-ary. If it want 0 or 1 value on the stack we are okay
; and do the setup and return.
(define-opcode return
(let loop ()
(let ((code-pointer (current-continuation-code-pointer)))
(assert (= (enum op protocol)
(code-pointer-ref code-pointer 0)))
(let ((protocol (code-pointer-ref code-pointer 1)))
(cond ((or (= protocol 1)
(= protocol ignore-values-protocol))
(pop-continuation!)
(goto continue 1)) ; one protocol byte
((or (= protocol (byte->native-protocol 1))
(= protocol (byte->native-protocol
ignore-values-protocol)))
(goto native-return 2))
((= protocol bottom-of-stack-protocol)
(let ((cont (get-continuation-from-heap)))
(if (continuation? cont)
(begin
(copy-continuation-from-heap! cont 0)
(loop))
(goto return-from-vm cont))))
((= protocol call-with-values-protocol)
(let ((proc (current-continuation-ref 0))
(offset (code-pointer-ref16 code-pointer 2)))
(if (= offset 0)
(skip-current-continuation! 0) ; we're done with it
(begin
(shrink-and-reset-continuation!
(address+ code-pointer offset))
(remove-current-frame)))
(push *val*)
(set! *val* proc)
(goto perform-application-with-rest-list 1 null 0)))
((= protocol two-byte-nargs+list-protocol)
(let ((wants-stack-args (code-pointer-ref16 code-pointer 2)))
(cond ((= 0 wants-stack-args)
(pop-continuation!)
(push (vm-cons *val* null (ensure-space vm-pair-size)))
(goto continue 3))
((= 1 wants-stack-args)
(pop-continuation!)
(push *val*)
(push null)
(goto continue 3))
(else
(push *val*)
(goto return-exception 1 null)))))
(else
(push *val*)
(goto return-exception 1 null)))))))
; CONT is not a continuation. If it is false and *VAL* is a fixnum we can
; return from the VM. Otherwise we set the continuation to #F and raise an
; exception.
(define (return-from-vm cont)
(cond ((and (false? cont)
(fixnum? *val*))
(set! s48-*callback-return-stack-block* false) ; not from a callback
(extract-fixnum *val*)) ; VM returns here
(else
(set-current-continuation! false)
(raise-exception wrong-type-argument -1 *val* cont))))
; This is only used in the closed-compiled version of VALUES.
; Stack is: arg0 arg1 ... argN rest-list N+1 total-arg-count.
; If REST-LIST is non-empty then there are at least two arguments on the stack.
(define-opcode closed-values
(let* ((nargs (extract-fixnum (pop)))
(stack-nargs (extract-fixnum (pop)))
(rest-list (pop)))
(goto return-values stack-nargs rest-list (- nargs stack-nargs))))
; Same as the above, except that the value count is in the instruction stream
; and all of the arguments are on the stack.
; This is used for in-lining calls to VALUES.
(define-opcode values
(goto return-values (code-offset 0) null 0))
; STACK-NARGS return values are on the stack. Find the actual continuation
; and check the protocol:
;
; 1
; If we have just one value we put it in *VAL* and return.
; ignore-values
; Drop everything and just return
; bottom-of-stack
; The real continuation is either in the stack or is FALSE (if we are really
; at the bottom of the stack). If the former we install it and try again.
; If the latter we can return a single value, but not multiple values.
; call-with-values
; Current continuation has a single value, a closure. We remove the closure
; and invoke it on the current values.
(define (return-values stack-nargs list-args list-arg-count)
(let* ((code-pointer (current-continuation-code-pointer))
(protocol (code-pointer-ref code-pointer 1)))
(assert (= (enum op protocol)
(code-pointer-ref code-pointer 0)))
(cond ((= protocol 1)
(if (= 1 (+ stack-nargs list-arg-count))
(begin
(return-value->*val* stack-nargs list-args)
(pop-continuation!)
(goto continue 1))
(goto return-exception stack-nargs list-args)))
((= protocol ignore-values-protocol)
(pop-continuation!)
(goto continue 1))
((native-protocol? protocol)
(goto native-return-values
protocol stack-nargs list-args list-arg-count))
((= protocol bottom-of-stack-protocol)
(let ((cont (get-continuation-from-heap)))
(cond ((continuation? cont)
(copy-continuation-from-heap! cont stack-nargs)
(goto return-values stack-nargs list-args list-arg-count))
((= 1 (+ stack-nargs list-arg-count))
(return-value->*val* stack-nargs list-args)
(goto return-from-vm cont))
(else
(goto return-exception stack-nargs list-args)))))
((= protocol call-with-values-protocol)
(set! *val* (current-continuation-ref 0))
(let ((offset (code-pointer-ref16 code-pointer 2)))
(cond ((= offset 0)
(skip-current-continuation! stack-nargs))
(else
(shrink-and-reset-continuation!
(address+ code-pointer offset))
(move-args-above-cont! stack-nargs))))
(goto perform-application-with-rest-list
stack-nargs
list-args
list-arg-count))
((<= protocol maximum-stack-args)
(goto fixed-arg-return protocol 1
stack-nargs list-args list-arg-count))
((= protocol two-byte-nargs+list-protocol)
(goto nary-arg-return (code-pointer-ref16 code-pointer 2) 3
stack-nargs list-args list-arg-count))
((= protocol two-byte-nargs-protocol)
(goto fixed-arg-return (code-pointer-ref16 code-pointer 2) 3
stack-nargs list-args list-arg-count))
(else
(error "unknown protocol" protocol)
(goto return-exception stack-nargs list-args)))))
(define (native-return-values protocol stack-nargs list-args list-arg-count)
(cond ((= protocol (byte->native-protocol 1))
(if (= 1 (+ stack-nargs list-arg-count))
(begin
(return-value->*val* stack-nargs list-args)
(goto native-return 2))
(goto return-exception stack-nargs list-args)))
((= protocol (byte->native-protocol ignore-values-protocol))
(goto native-return 2))
(else
(error "unknown native return protocol" protocol)
(goto return-exception stack-nargs list-args))))
(define (native-return protocol-skip)
(goto post-native-dispatch
(s48-invoke-native-continuation
(address->integer (pop-continuation-from-stack))
protocol-skip)))
; The continuation wants a fixed number of arguments. We pop the current
; continuation, move the stack arguments down to the new stack top, push
; any list arguments and off we go.
(define (fixed-arg-return count bytes-used stack-nargs list-args list-arg-count)
(if (= count (+ stack-nargs list-arg-count))
(let ((arg-top (pointer-to-stack-arguments)))
(pop-continuation!)
(move-stack-arguments! arg-top stack-nargs)
(if (not (= 0 list-arg-count))
(begin
(push-list list-args list-arg-count)
(unspecific))) ; avoid type problem
(goto continue bytes-used))
(goto return-exception stack-nargs list-args)))
; The continuation wants a COUNT arguments on the stack plus a list of any
; additional arguments. We pop the current continuation, move the stack
; arguments down to the new stack top, adjust the number of stack arguments,
; push the remaining list arguments, and off we go.
(define (nary-arg-return count bytes-used stack-nargs list-args list-arg-count)
(if (<= count (+ stack-nargs list-arg-count))
(let ((arg-top (pointer-to-stack-arguments)))
(pop-continuation!)
(move-stack-arguments! arg-top stack-nargs)
(push (if (<= stack-nargs count)
(do ((stack-nargs stack-nargs (+ stack-nargs 1))
(l list-args (vm-cdr l)))
((= count stack-nargs)
l)
(push (vm-car l)))
(pop-args->list*+gc list-args (- stack-nargs count))))
(goto continue bytes-used))
(goto return-exception stack-nargs list-args)))
; Move the (single) return value to *VAL*.
(define (return-value->*val* stack-nargs list-args)
(set! *val*
(if (= 1 stack-nargs)
(pop)
(vm-car list-args))))
; The return protocol doesn't match up so we gather all the return values into
; a list and raise an exception.
(define (return-exception stack-nargs list-args)
(let ((args (pop-args->list*+gc list-args stack-nargs)))
(raise-exception wrong-number-of-arguments
-1 ; no next opcode
false
args)))
;----------------
; Manipulating lists of arguments
; Push COUNT elements from LIST onto the stack, returning whatever is left.
(define (push-list list count)
(push list)
(if (ensure-stack-space! count) ; This needs a better interface.
(set-interrupt-flag!))
(let ((list (pop)))
(do ((i count (- i 1))
(l list (vm-cdr l)))
((<= i 0) l)
(push (vm-car l)))))
; Copy LIST, which has LENGTH elements.
(define (copy-list*+gc list length)
(if (= length 0)
null
(begin
(save-temp0! list)
(let* ((key (ensure-space (* vm-pair-size length)))
(list (recover-temp0!))
(res (vm-cons (vm-car list) null key)))
(do ((l (vm-cdr list) (vm-cdr l))
(last res (let ((next (vm-cons (vm-car l) null key)))
(vm-set-cdr! last next)
next)))
((vm-eq? null l)
res))))))
; Pop COUNT arguments into a list with START as the cdr.
(define (pop-args->list*+gc start count)
(save-temp0! start)
(let* ((key (ensure-space (* vm-pair-size count)))
(start (recover-temp0!)))
(do ((args start (vm-cons (pop) args key))
(count count (- count 1)))
((= count 0)
args))))
;----------------
; Opcodes for the closed-compiled versions of arithmetic primitives.
; The opcode sequences used are:
; binary-reduce1 binary-op binary-reduce2 return
; and
; compare-reduce1 binary-comparison-op compare-reduce2 return
; The compare version quits if the comparison operator returns false.
;
; For ...-reduce1 the stack looks like:
; arg0 arg1 ... argN rest-list N+1
; If there are two or more arguments then at least two arguments are on the
; stack.
; Turn
; *stack* = arg0 (arg1 . more) <3
; into
; *val* = arg1, *stack* = arg0 (arg1 .more) 1 arg0
; or turn
; *stack* = arg0 arg1 ... argN rest-list N+1
; into
; *val* = arg1, *stack* = false arg1 ... argN rest-list N arg0
(define-opcode binary-reduce1
(let ((stack-nargs (extract-fixnum (stack-ref 0))))
(if (= stack-nargs 0)
(let ((rest-list (stack-ref 1))
(arg0 (stack-ref 2)))
(push arg0)
(set! *val* (vm-car rest-list)))
(let ((arg0 (stack-ref (+ stack-nargs 1)))
(arg1 (stack-ref stack-nargs)))
(stack-set! (+ stack-nargs 1) false)
(stack-set! 0 (enter-fixnum (- stack-nargs 1)))
(push arg0)
(set! *val* arg1)))
(goto continue 0)))
; Turn
; *val* = result, *stack* = arg0 (arg1 . more) 2
; into
; *stack* = result more 2
; or turn
; *val* = result, *stack* = arg1 ... argN rest-list N
; into
; *stack* = result ... argN rest-list N
(define-opcode binary-reduce2
(let* ((stack-nargs (extract-fixnum (stack-ref 0)))
(delta (case stack-nargs
((0)
(let ((rest-list (stack-ref 1)))
(if (vm-eq? (vm-cdr rest-list) null)
1
(begin
(stack-set! 1 (vm-cdr rest-list))
(stack-set! 2 *val*)
-2))))
((1)
(let ((rest-list (stack-ref 1)))
(if (vm-eq? rest-list null)
1
(begin
(stack-set! 0 (enter-fixnum 0))
(stack-set! 2 *val*)
-2))))
(else
(stack-set! (+ stack-nargs 1) *val*)
-2))))
(set! *code-pointer* (address+ *code-pointer* delta))
(goto interpret *code-pointer*)))
(define-opcode binary-comparison-reduce2
(if (false? *val*)
(goto continue 0)
(let* ((stack-nargs (extract-fixnum (stack-ref 0)))
(delta (case stack-nargs
((0)
(let ((rest-list (stack-ref 1)))
(if (vm-eq? (vm-cdr rest-list) null)
1
(begin
(stack-set! 1 (vm-cdr rest-list))
(stack-set! 2 (vm-car rest-list))
-2))))
((1)
(let ((rest-list (stack-ref 1)))
(if (vm-eq? rest-list null)
1
(begin
(stack-set! 0 (enter-fixnum 0))
-2))))
(else
-2))))
(set! *code-pointer* (address+ *code-pointer* delta))
(goto interpret *code-pointer*))))
;----------------
; Statistics stuff
;
;(define call-stats (make-vector 16 0))
;
; (let ((i (min stack-arg-count 15)))
; (vector-set! call-stats i (+ 1 (vector-ref call-stats i))))
;
;(define plain-calls (make-vector 7 0))
;
;(define (add-plain-call i)
; (vector-set! plain-calls i (+ (vector-ref plain-calls i) 1)))
;
;(define apply-calls (make-vector 7 0))
;
;(define (add-apply-call i)
; (vector-set! apply-calls i (+ (vector-ref apply-calls i) 1)))
;
;(define (dump-call-stats)
; (let ((out (current-output-port)))
; (write-string "Calls:" out)
; (do ((i 0 (+ i 1)))
; ((= i 16))
; (write-char #\space out)
; (write-integer (vector-ref call-stats i) out))
; (write-char #\newline out)
; (write-string "Plain calls" out)
; (write-char #\newline out)
; (do ((i 0 (+ i 1)))
; ((= i 7))
; (write-char #\space out)
; (write-string (vector-ref call-strings i) out)
; (write-integer (vector-ref plain-calls i) out)
; (write-char #\newline out))
; (write-string "Apply calls" out)
; (write-char #\newline out)
; (do ((i 0 (+ i 1)))
; ((= i 7))
; (write-char #\space out)
; (write-string (vector-ref call-strings i) out)
; (write-integer (vector-ref apply-calls i) out)
; (write-char #\newline out))))
;
;(define call-strings
; '#("nary-dispatch: "
; "args&nargs: "
; "no-env: "
; "two-bytes-nargs+list: "
; "plain: "
; "two-byte-nargs: "
; "big-stack: "))
|