1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
; Part of Scheme 48 1.9. See file COPYING for notices and license.
; Authors: Richard Kelsey, Jonathan Rees, Mike Sperber, David Frese,
; Martin Gasbichler
; Code for handling interrupts.
; New interrupt handler vector in *val*
(define-opcode set-interrupt-handlers!
(cond ((or (not (vm-vector? *val*))
(< (vm-vector-length *val*) interrupt-count))
(raise-exception wrong-type-argument 0 *val*))
(else
(let ((temp (shared-ref *interrupt-handlers*)))
(shared-set! *interrupt-handlers* *val*)
(set! *val* temp)
(goto continue 0)))))
; New interrupt mask as fixnum in *val*
(define-opcode set-enabled-interrupts!
(let ((old *enabled-interrupts*))
(set-enabled-interrupts! (extract-fixnum *val*))
(set! *val* (enter-fixnum old))
(goto continue 0)))
; Save the current interpreter state and call an interrupt handler.
(define (handle-interrupt)
(push *val*)
(receive (code pc)
(current-code+pc)
(push code)
(push (enter-fixnum pc)))
(push-interrupt-state)
(push-adlib-continuation! (code+pc->code-pointer *interrupted-byte-opcode-return-code*
return-code-pc))
(goto find-and-call-interrupt-handler))
(define (handle-native-interrupt protocol-skip)
(push (enter-fixnum protocol-skip))
(push *val*)
(push-interrupt-state)
(push-adlib-continuation! (code+pc->code-pointer *interrupted-native-call-return-code*
return-code-pc))
(goto find-and-call-interrupt-handler))
(define (handle-native-poll template return-address)
(push *val*)
(push template)
(push return-address)
(push-interrupt-state)
(push-adlib-continuation! (code+pc->code-pointer *native-poll-return-code*
return-code-pc))
(goto find-and-call-interrupt-handler))
; MG: This is an old comment, I don't want to remove it because I
; don't understand it:
; We now have three places interrupts are caught:
; - during a byte-code call
; - during a native-code call
; - during a native-code poll
; The two native calls can be done using the same method. Argh. We need
; to save the proposal and enabled interrupts and still end up with a template
; on top of the stack. Just make a return pointer with two extra pointer
; slots at the top. The native-dispatch code pops the code pointer and
; template, pushes the extra state, and then ... . No. The simple thing
; to do is have the native code make one continuation and then we push a
; second, byte-coded one on top. It's ugly no matter what.
; Ditto, except that we are going to return to the current continuation instead
; of continuating with the current template.
(define interrupt-state-descriptors 2)
(define (push-interrupt-state)
(push (current-proposal))
(set-current-proposal! false)
(push (enter-fixnum *enabled-interrupts*)))
(define (s48-pop-interrupt-state)
(set-enabled-interrupts! (extract-fixnum (pop)))
(set-current-proposal! (pop)))
(define (find-and-call-interrupt-handler)
(let* ((pending-interrupt (get-highest-priority-interrupt!))
(handlers (shared-ref *interrupt-handlers*))
(arg-count (push-interrupt-args pending-interrupt)))
(if (not (vm-vector? handlers))
(error "interrupt handler is not a vector"))
(set! *val* (vm-vector-ref handlers pending-interrupt))
(if (not (closure? *val*))
(error "interrupt handler is not a closure" pending-interrupt))
(set-enabled-interrupts! 0)
(goto call-interrupt-handler arg-count pending-interrupt)))
; Push the correct arguments for each type of interrupt.
;
; For alarm interrupts the interrupted template is passed to the handler
; for use by code profilers.
; For gc interrupts we push the list of things to be finalized,
; the interrupt mask, and whether the GC is running out of space.
; For i/o-completion we push the channel and its status.
; For i/o-error we push the channel and the error code.
; For external-event, we push the event-type uid.
(define (push-interrupt-args pending-interrupt)
(cond ((eq? pending-interrupt (enum interrupt alarm))
(push *interrupted-template*)
(set! *interrupted-template* false)
(push (enter-fixnum *enabled-interrupts*))
2)
((or (eq? pending-interrupt (enum interrupt post-major-gc))
(eq? pending-interrupt (enum interrupt post-minor-gc)))
(push *finalize-these*)
(set! *finalize-these* null)
(push (enter-fixnum *enabled-interrupts*))
(push (enter-boolean *gc-in-trouble?*))
3)
((eq? pending-interrupt (enum interrupt i/o-completion))
;; we don't know which one it is for each individual channel
(let ((channel (dequeue-channel!)))
(if (not (channel-queue-empty?))
(note-interrupt! (enum interrupt i/o-completion)))
(push channel)
(push (channel-error? channel))
(push (channel-os-status channel))
(push (enter-fixnum *enabled-interrupts*))
4))
((eq? pending-interrupt (enum interrupt os-signal))
(push (enter-fixnum (os-signal-ring-remove!)))
(if (os-signal-ring-ready?)
(note-interrupt! (enum interrupt os-signal)))
(push (enter-fixnum *enabled-interrupts*))
2)
((eq? pending-interrupt (enum interrupt external-event))
(receive (uid still-ready?)
(dequeue-external-event!)
(push (enter-fixnum uid))
(if still-ready?
(note-interrupt! (enum interrupt external-event)))
(push (enter-fixnum *enabled-interrupts*))
2))
(else
(push (enter-fixnum *enabled-interrupts*))
1)))
;;; Dealing with OS signals
(define *os-signal-ring-length* 32)
(define *os-signal-ring*
(let ((v (make-vector *os-signal-ring-length* 0)))
(if (null-pointer? v)
(error "out of memory, unable to continue"))
v))
(define *os-signal-ring-start* 0) ; index of oldest signal
(define *os-signal-ring-ready* 0) ; index of last signal for which an
; os-event has already been generated
(define *os-signal-ring-end* 0) ; index of newest signal
;; ring-like incrementation
(define-syntax os-signal-ring-inc!
(syntax-rules ()
((os-signal-ring-inc! var)
(set! var
(if (= var
(- *os-signal-ring-length* 1))
0
(+ var 1))))))
(define (os-signal-ring-ready?)
(not (= *os-signal-ring-ready*
*os-signal-ring-start*)))
(define (os-signal-ring-add! sig)
(let ((sig-pos *os-signal-ring-end*))
(os-signal-ring-inc! *os-signal-ring-end*)
(if (= *os-signal-ring-start*
*os-signal-ring-end*)
(error "OS signal ring too small, report to Scheme 48 maintainers"))
(vector-set! *os-signal-ring* sig-pos sig)))
(define (os-signal-ring-empty?)
(= *os-signal-ring-start*
*os-signal-ring-end*))
(define (os-signal-ring-remove!)
(if (os-signal-ring-empty?)
(error "This cannot happen: OS signal ring empty"))
(let ((sig (vector-ref *os-signal-ring* *os-signal-ring-start*)))
(os-signal-ring-inc! *os-signal-ring-start*)
sig))
; Called from outside when an os-signal event is returned.
(define (s48-add-os-signal sig)
(os-signal-ring-add! sig))
; Called from outside to check whether an os-event has to be signalled
(define (s48-os-signal-pending)
(if (= *os-signal-ring-ready*
*os-signal-ring-end*)
#f
(begin
(os-signal-ring-inc! *os-signal-ring-ready*)
#t)))
; Called from outside to initialize a new process.
(define (s48-reset-interrupts!)
(set! *os-signal-ring-start* 0)
(set! *os-signal-ring-ready* 0)
(set! *os-signal-ring-end* 0)
(set! *enabled-interrupts* 0)
(pending-interrupts-clear!)
(set! s48-*pending-interrupt?* #f))
(define-opcode poll
(if (and (interrupt-flag-set?)
(pending-interrupt?))
(goto handle-interrupt)
(goto continue 0)))
(define-opcode resume-interrupted-opcode-to-byte-code
(pop)
(s48-pop-interrupt-state)
(let ((pc (pop)))
(set-code-pointer! (pop) (extract-fixnum pc)))
(set! *val* (pop))
(goto interpret *code-pointer*))
(define-opcode resume-interrupted-call-to-native-code
(pop)
(s48-pop-interrupt-state)
(set! *val* (pop))
(let ((protocol-skip (extract-fixnum (pop))))
(goto really-call-native-code protocol-skip)))
(define-opcode resume-native-poll
(pop) ; frame size
(s48-pop-interrupt-state)
(let* ((return-address (pop))
(template (pop)))
(set! *val* (pop))
(goto post-native-dispatch (s48-jump-native return-address template))))
; Do nothing much until something happens. To avoid race conditions this
; opcode is called with all interrupts disabled, so it has to return if
; any interrupt occurs, even a disabled one.
(define-primitive wait (fixnum-> boolean->)
(lambda (max-wait minutes?)
(if (and (not (pending-interrupt?))
(pending-interrupts-empty?))
(wait-for-event max-wait minutes?))
(goto return-unspecific 0)))
; The players:
; pending-interrupts-X A bit mask of pending interrupts
; *enabled-interrupts* A bit mask of enabled interrupts
; s48-*pending-interrupt?* True if either an event or interrupt is pending
; s48-*pending-events?* True if an event is pending
;
; When an asynchronous event occurs the OS sets S48-*PENDING-EVENTS?* and
; S48-*PENDING-INTERRUPT?* to true.
;
; When S48-*PENDING-EVENTS?* is true the VM calls (CURRENT-EVENTS) to get the
; pending events.
;
; The goals of all this mucking about are:
; - no race conditions
; - the VM operates synchronously; only the OS is asynchronous
; - polling only requires testing S48-*PENDING-INTERRUPT?*
(define s48-*pending-events?* #f)
; Called asynchronously by the OS
(define (s48-note-event)
(set! s48-*pending-events?* #t) ; order required by non-atomicity
(set-interrupt-flag!))
; Called when the interrupt flag is set, so either an event or interrupt is
; waiting (or both). We process any events and then see if is an interrupt.
(define (pending-interrupt?)
(if s48-*pending-events?*
(begin
(set! s48-*pending-events?* #f)
(process-events)))
(real-pending-interrupt?))
; Check for a pending interrupt, clearing the interrupt flag if there is
; none. This and S48-NOTE-EVENT cooperate to avoid clearing the interrupt
; flag while an event is pending.
(define (real-pending-interrupt?)
(cond ((= 0 (bitwise-and (pending-interrupts-mask)
*enabled-interrupts*))
(clear-interrupt-flag!)
(if s48-*pending-events?*
(set-interrupt-flag!))
#f)
(else
#t)))
(define (update-pending-interrupts)
(if (real-pending-interrupt?)
(set-interrupt-flag!)))
; Add INTERRUPT to the set of pending interrupts, then check to see if it
; is currently pending.
(define (note-interrupt! interrupt)
(pending-interrupts-add! (interrupt-bit interrupt))
(update-pending-interrupts))
; Remove INTERRUPT from the set of pending interrupts, then recheck for pending
; interrupts; INTERRUPT may have been the only one.
(define (clear-interrupt! interrupt)
(pending-interrupts-remove! (interrupt-bit interrupt))
(update-pending-interrupts))
; Install a new set of enabled interrupts. As usual we have to recheck for
; enabled interrupts.
(define (set-enabled-interrupts! enabled)
(set! *enabled-interrupts* enabled)
(update-pending-interrupts))
; Disable all interrupts.
(define (disable-interrupts!)
(set! s48-*pending-interrupt?* #f)
(set! *enabled-interrupts* 0))
; Enable all interrupts.
(define (enable-interrupts!)
(set-enabled-interrupts! -1))
; We don't need to mess with S48-*PENDING-INTERRUPT?* because all interrupts
; are about to be disabled.
(define (get-highest-priority-interrupt!)
(let ((n (bitwise-and (pending-interrupts-mask) *enabled-interrupts*)))
(let loop ((i 0) (m 1))
(cond ((= 0 (bitwise-and n m))
(loop (+ i 1) (* m 2)))
(else
(pending-interrupts-remove! m)
i)))))
; Process any pending OS events. PROCESS-EVENT returns a mask of any interrupts
; that have just occured.
(define (process-events)
(let loop ()
(receive (type channel status)
(get-next-event)
(pending-interrupts-add! (process-event type channel status))
(if (not (eq? type (enum events no-event)))
(loop)))))
; Do whatever processing the event requires.
(define (process-event event id status)
(cond ((eq? event (enum events alarm-event))
;; Save the interrupted template for use by profilers.
;; Except that we have no more templates and no more profiler.
;(if (false? *interrupted-template*)
; (set! *interrupted-template* *template*))
(interrupt-bit (enum interrupt alarm)))
((eq? event (enum events keyboard-interrupt-event))
(interrupt-bit (enum interrupt keyboard)))
((eq? event (enum events io-completion-event))
(enqueue-channel! id status false)
(interrupt-bit (enum interrupt i/o-completion)))
((eq? event (enum events io-error-event))
(enqueue-channel! id status true)
(interrupt-bit (enum interrupt i/o-completion)))
((eq? event (enum events os-signal-event))
(interrupt-bit (enum interrupt os-signal)))
((eq? event (enum events external-event))
(interrupt-bit (enum interrupt external-event)))
((eq? event (enum events no-event))
0)
((eq? event (enum events error-event))
(error-message "OS error while getting event")
(error-message (error-string status))
0)
(else
(error-message "unknown type of event")
0)))
|