File: phasecorrelation.c

package info (click to toggle)
schroedinger 1.0.11-2.1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 8,480 kB
  • ctags: 6,139
  • sloc: ansic: 97,380; sh: 11,238; xml: 6,509; makefile: 387
file content (136 lines) | stat: -rw-r--r-- 2,356 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "common.h"


void
discrete_fourier_transform (double *d1, double *d2, double *s1, double *s2,
    double *s3, int n)
{
  int mask = n-1;
  double x;
  double y;
  int i;
  int j;

  for(i=0;i<n;i++){
    x = 0;
    y = 0;
    for(j=0;j<n;j++){
      x += s1[j] * s2[(i*j)&mask];
      y += s1[j] * s3[(i*j)&mask];
    }
    d1[i] = x;
    d2[i] = y;
  }
}

void
complex_discrete_fourier_transform (double *d1, double *d2,
    double *s1, double *s2, double *s3, double *s4, int n)
{
  int mask = n-1;
  double x;
  double y;
  int i;
  int j;

  for(i=0;i<n;i++){
    x = 0;
    y = 0;
    for(j=0;j<n;j++){
      x += s1[j] * s3[(i*j)&mask] - s2[j] * s4[(j*i)&mask];
      y += s1[j] * s4[(i*j)&mask] + s2[j] * s3[(j*i)&mask];
    }
    d1[i] = x;
    d2[i] = y;
  }
}


void sincos_array (double *d1, double *d2, double inc, int n)
{
  int i;

  for(i=1;i<n;i++){
    d1[i] = cos(inc*i);
    d2[i] = sin(inc*i);
  }
}

void complex_mult (double *d1, double *d2, double *s1, double *s2,
    double *s3, double *s4, int n)
{
  int i;
  for(i=0;i<n;i++){
    d1[i] = s1[i] * s3[i] - s2[i] * s4[i];
    d2[i] = s1[i] * s4[i] + s2[i] * s3[i];
  }
}

void complex_normalize (double *i1, double *i2, int n)
{
  int i;
  double x;
  for(i=0;i<n;i++){
    x = sqrt(i1[i]*i1[i] + i2[i]*i2[i]);
    if (x > 0) x = 1/x;
    i1[i] *= x;
    i2[i] *= x;
  }
}

#define N 256

int main (int argc, char *argv[])
{
  double s[N], c[N];
  double image1[N];
  double image2[N];
  double ft1r[N];
  double ft1i[N];
  double ft2r[N];
  double ft2i[N];
  double conv_r[N], conv_i[N];
  double resr[N], resi[N];
  int i;

  sincos_array (c, s, 2*M_PI/N, N);

  for(i=0;i<N;i++){
    image1[i] = rand_f64();
    image2[i] = 0;
  }

  for(i=0;i<N/2;i++){
    image2[i] = image1[i+N/4+N/16];
  }

  discrete_fourier_transform (ft1r, ft1i, image1, c, s, N);
  discrete_fourier_transform (ft2r, ft2i, image2, c, s, N);

  for(i=0;i<N;i++){
    ft2i[i] = -ft2i[i];
  }
  complex_mult (conv_r, conv_i, ft1r, ft1i, ft2r, ft2i, N);

  complex_normalize (conv_r, conv_i, N);

  complex_discrete_fourier_transform (resi, resr, conv_i, conv_r, c, s, N);

  for(i=0;i<N;i++){
    printf("%d %g %g %g %g\n", i, resr[i], resi[i], conv_r[i], conv_i[i]);
  }

  return 0;
}