1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
# # Real function spaces
#
# Author: Jørgen S. Dokken
#
# License: MIT
#
# In this example we will show how to use the "real" function space to solve
# a singular Poisson problem.
#
# ## Mathematical formulation
# The problem at hand is:
# Find $u \in H^1(\Omega)$ such that
#
# $$
# \begin{align}
# -\Delta u &= f \quad \text{in } \Omega, \\
# \frac{\partial u}{\partial n} &= g \quad \text{on } \partial \Omega, \\
# \int_\Omega u &= h.
# \end{align}
# $$
#
# ### Lagrange multiplier
# We start by considering the equivalent optimization problem:
# Find $u \in H^1(\Omega)$ such that
#
# $$
# \begin{align}
# \mathop{\mathrm{arg\,min}}_{u \in H^1(\Omega)}~J(u) =
# \mathop{\mathrm{arg\,min}}_{u \in H^1(\Omega)}~\frac{1}{2}\int_\Omega \vert \nabla u \cdot \nabla u \vert \mathrm{d}x
# - \int_\Omega f u \mathrm{d}x - \int_{\partial \Omega} g u \mathrm{d}s,
# \end{align}
# $$
#
# such that
#
# $$
# \begin{align}
# \int_\Omega u = h.
# \end{align}
# $$
#
# We introduce a Lagrange multiplier $\lambda$ to enforce the constraint:
#
# $$
# \begin{align}
# \mathop{\mathrm{arg\,min}}_{u \in H^1(\Omega), \lambda\in \mathbb{R}}~\mathcal{L}(u, \lambda) =
# \mathop{\mathrm{arg\,min}}_{u \in H^1(\Omega), \lambda\in \mathbb{R}} J(u) + \lambda (\int_\Omega u \mathrm{d}x-h).
# \end{align}
# $$
#
# We then compute the optimality conditions for the problem above
#
# $$
# \begin{align}
# \frac{\partial \mathcal{L}}{\partial u}[\delta u] &= \int_\Omega \nabla u \cdot \nabla \delta u \mathrm{d}x + \lambda\int \delta u \mathrm{d}x - \int_\Omega f \delta u ~\mathrm{d}x - \int_{\partial \Omega} g \delta u~\mathrm{d}s = 0, \\
# \frac{\partial \mathcal{L}}{\partial \lambda}[\delta \lambda] &=\delta \lambda (\int_\Omega u \mathrm{d}x -h)= 0.
# \end{align}
# $$
#
# We write the weak formulation:
#
# $$
# \begin{align}
# \int_\Omega \nabla u \cdot \nabla \delta u~\mathrm{d}x + \int_\Omega \lambda \delta u~\mathrm{d}x &= \int_\Omega f \delta u~\mathrm{d}x + \int_{\partial \Omega} g v \mathrm{d}s\\
# \int_\Omega u \delta \lambda \mathrm{d}x &= h \delta \lambda .
# \end{align}
# $$
#
# where we have moved $\delta\lambda$ into the integral as it is a spatial constant.
# ## Implementation
# We start by import the necessary modules
# ```{admonition} Clickable functions/classes
# Note that for the modules imported in this example, you can click on the function/class
# name to be redirected to the corresponding documentation page.
# ```
# +
from packaging.version import Version
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx.fem.petsc
import numpy as np
from scifem import create_real_functionspace, assemble_scalar
from scifem.petsc import apply_lifting_and_set_bc
import ufl
import pyvista
# -
# We start by creating the domain using {py:mod}`dolfinx` and derive the source terms
# $f$, $g$ and $h$ from our manufactured solution using {py:mod}`ufl`.
# For this example we will use the following exact solution
#
# $$
# \begin{align}
# u_{exact}(x, y) = 0.3y^2 + \sin(2\pi x).
# \end{align}
# $$
# +
M = 20
mesh = dolfinx.mesh.create_unit_square(
MPI.COMM_WORLD, M, M, dolfinx.mesh.CellType.triangle, dtype=np.float64
)
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 1))
def u_exact(x):
return 0.3 * x[1] ** 2 + ufl.sin(2 * ufl.pi * x[0])
x = ufl.SpatialCoordinate(mesh)
n = ufl.FacetNormal(mesh)
g = ufl.dot(ufl.grad(u_exact(x)), n)
f = -ufl.div(ufl.grad(u_exact(x)))
h = assemble_scalar(u_exact(x) * ufl.dx)
# -
# ### Creating the real function space and mixed space
# We then create the Lagrange multiplier space using {py:func}`scifem.create_real_functionspace`.
# This creates a {py:class}`dolfinx.fem.FunctionSpace` with a single degree of freedom (constant) over the whole domain.
R = create_real_functionspace(mesh)
# Next, we can create a mixed-function space for our problem
#
# ```{admonition} Note on DOLFINx versions
# The API for creating blocked problems in DOLFINx has vastly improved over the last few versions.
# It is recommended to use DOLFINx v0.9.0 or later, where one can use {py:class}`ufl.MixedFunctionSpace`
# to create a mixed-space of `M` number of spaces. One can then use {py:func}`ufl.TrialFunctions`
# and {py:func}`ufl.TestFunctions` as one would do with a {py:func}`basix.ufl.mixed_element`.
# ```
if Version(dolfinx.__version__) == Version("0.8.0"):
u = ufl.TrialFunction(V)
lmbda = ufl.TrialFunction(R)
du = ufl.TestFunction(V)
dl = ufl.TestFunction(R)
elif Version(dolfinx.__version__) >= Version("0.9.0.0"):
W = ufl.MixedFunctionSpace(V, R)
u, lmbda = ufl.TrialFunctions(W)
du, dl = ufl.TestFunctions(W)
else:
raise RuntimeError("Unsupported version of dolfinx")
# ### Defining and assembling the variational problem
# We can now define the variational problem
# +
zero = dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(0.0))
a00 = ufl.inner(ufl.grad(u), ufl.grad(du)) * ufl.dx
a01 = ufl.inner(lmbda, du) * ufl.dx
a10 = ufl.inner(u, dl) * ufl.dx
L0 = ufl.inner(f, du) * ufl.dx + ufl.inner(g, du) * ufl.ds
L1 = ufl.inner(zero, dl) * ufl.dx
a = [[a00, a01], [a10, None]]
L = [L0, L1]
a_compiled = dolfinx.fem.form(a)
L_compiled = dolfinx.fem.form(L)
# -
# Note that we have defined the variational form in a block form, and
# that we have not included $h$ in the variational form. We will enforce this
# once we have assembled the right hand side vector.
# We can now assemble the matrix and vector usig {py:func}`dolfinx.fem.petsc.assemble_matrix`
# and {py:func}`dolfinx.fem.petsc.assemble_vector`.
if Version(dolfinx.__version__) < Version("0.10.0"):
A = dolfinx.fem.petsc.assemble_matrix_block(a_compiled)
else:
A = dolfinx.fem.petsc.assemble_matrix(a_compiled)
A.assemble()
# In DOLFINx>=v0.10.0, the `assemble_vector` function for blocked spaces has been rewritten to reflect how
# it works for standard assembly and `nest` assembly. This means that lifting is applied manually.
# In this case, with no Dirichlet BC, we could skip those steps.
# However, for clarity we include them here.
bcs = []
if Version(dolfinx.__version__) < Version("0.10.0"):
b = dolfinx.fem.petsc.assemble_vector_block(L_compiled, a_compiled, bcs=bcs)
else:
b = dolfinx.fem.petsc.assemble_vector(L_compiled, kind="mpi")
apply_lifting_and_set_bc(b, a_compiled, bcs=bcs)
# Next, we modify the second part of the block to contain `h`
# We start by enforcing the multiplier constraint $h$ by modifying the right hand side vector.
# On the main branch, this is greatly simplified
# +
uh = dolfinx.fem.Function(V, name="u")
if Version(dolfinx.__version__) >= Version("0.10.0"):
# We start by inserting the value in the real space
rh = dolfinx.fem.Function(R)
rh.x.array[0] = h
# Next we need to add this value to the existing right hand side vector.
# Therefore we create assign 0s to the primal space
b_real_space = b.duplicate()
uh.x.array[:] = 0
# Transfer the data to `b_real_space`
dolfinx.fem.petsc.assign([uh, rh], b_real_space)
# And accumulate the values in the right hand side vector
b.axpy(1, b_real_space)
# We destroy the temporary work vector after usage
b_real_space.destroy()
else:
from dolfinx.cpp.la.petsc import scatter_local_vectors, get_local_vectors
if Version(dolfinx.__version__) < Version("0.9.0"):
maps = [(V.dofmap.index_map, V.dofmap.index_map_bs), (R.dofmap.index_map, R.dofmap.index_map_bs)]
else:
maps = [(Wi.dofmap.index_map, Wi.dofmap.index_map_bs) for Wi in W.ufl_sub_spaces()]
b_local = get_local_vectors(b, maps)
b_local[1][:] = h
scatter_local_vectors(
b,
b_local,
maps,
)
b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
# -
# ### Solving the linear system
# We can now solve the linear system using {py:mod}`petsc4py`.
# +
ksp = PETSc.KSP().create(mesh.comm)
ksp.setOperators(A)
ksp.setType("preonly")
pc = ksp.getPC()
pc.setType("lu")
pc.setFactorSolverType("mumps")
if Version(dolfinx.__version__) >= Version("0.10.0"):
xh = b.duplicate()
else:
xh = dolfinx.fem.petsc.create_vector_block(L_compiled)
ksp.solve(b, xh)
xh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
# -
# Finally, we extract the solution u from the blocked system and compute the error
uh = dolfinx.fem.Function(V, name="u")
if Version(dolfinx.__version__) >= Version("0.10.0"):
dolfinx.fem.petsc.assign(xh, [uh, rh])
else:
x_local = get_local_vectors(xh, maps)
uh.x.array[: len(x_local[0])] = x_local[0]
uh.x.scatter_forward()
# We destroy all PETSc objects
b.destroy()
xh.destroy()
A.destroy()
ksp.destroy()
# ### Post-processing
# Finally, we compare our approximate solution with the exact solution
# by computing the $L^2(\Omega)$ error.
# We use the convenience function {py:func}`scifem.assemble_scalar` to compute the error.
diff = uh - u_exact(x)
error = ufl.inner(diff, diff) * ufl.dx
print(f"L2 error: {np.sqrt(assemble_scalar(error)):.2e}")
# We can now plot the solution
# +
vtk_mesh = dolfinx.plot.vtk_mesh(V)
grid = pyvista.UnstructuredGrid(*vtk_mesh)
grid.point_data["u"] = uh.x.array.real
warped = grid.warp_by_scalar("u", factor=1)
plotter = pyvista.Plotter()
plotter.add_mesh(grid, style="wireframe")
plotter.add_mesh(warped)
if not pyvista.OFF_SCREEN:
plotter.show()
# -
|