1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx
import dolfinx.fem.petsc
import ufl
import numpy as np
import scifem
import pytest
@pytest.mark.parametrize("L", [0.1, 0.2, 0.3])
@pytest.mark.parametrize("H", [1.3, 0.8, 0.2])
@pytest.mark.parametrize(
"cell_type", [dolfinx.mesh.CellType.triangle, dolfinx.mesh.CellType.quadrilateral]
)
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_real_function_space_mass(L, H, cell_type, dtype):
"""
Check that real space mass matrix is the same as assembling the volume of the mesh
"""
mesh = dolfinx.mesh.create_rectangle(
MPI.COMM_WORLD, [[0.0, 0.0], [L, H]], [7, 9], cell_type, dtype=dtype
)
V = scifem.create_real_functionspace(mesh)
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
a = ufl.inner(u, v) * ufl.dx
A = dolfinx.fem.assemble_matrix(dolfinx.fem.form(a, dtype=dtype), bcs=[])
A.scatter_reverse()
tol = 100 * np.finfo(dtype).eps
cell_map = mesh.topology.index_map(mesh.topology.dim)
if cell_map.size_local + cell_map.num_ghosts > 0:
assert len(A.data) == 1
if cell_map.local_range[0] == 0:
assert np.isclose(A.data[0], L * H, atol=tol)
else:
assert len(A.data) == 0
assert len(V.dofmap.list.flatten()) == 0
assert V.dofmap.index_map.size_local == 0
assert V.dofmap.index_map.num_ghosts == 1
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
@pytest.mark.parametrize(
"cell_type", [dolfinx.mesh.CellType.tetrahedron, dolfinx.mesh.CellType.hexahedron]
)
def test_real_function_space_vector(cell_type, dtype):
"""
Test that assembling against a real space test function is equivalent to assembling a vector
"""
mesh = dolfinx.mesh.create_unit_cube(MPI.COMM_WORLD, 2, 3, 5, cell_type, dtype=dtype)
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 3))
v = ufl.TrialFunction(V)
R = scifem.create_real_functionspace(mesh)
u = ufl.TestFunction(R)
a_R = ufl.inner(u, v) * ufl.dx
form_rhs = dolfinx.fem.form(a_R, dtype=dtype)
A_R = dolfinx.fem.assemble_matrix(form_rhs, bcs=[])
A_R.scatter_reverse()
L = ufl.inner(ufl.constantvalue.IntValue(1), v) * ufl.dx
form_lhs = dolfinx.fem.form(L, dtype=dtype)
b = dolfinx.fem.assemble_vector(form_lhs)
b.scatter_reverse(dolfinx.la.InsertMode.add)
b.scatter_forward()
row_map = A_R.index_map(0)
num_local_rows = row_map.size_local
num_dofs = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
tol = 100 * np.finfo(dtype).eps
if MPI.COMM_WORLD.rank == 0:
assert num_local_rows == 1
num_dofs_global = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
assert A_R.indptr[1] - A_R.indptr[0] == num_dofs_global
np.testing.assert_allclose(A_R.indices, np.arange(num_dofs_global))
np.testing.assert_allclose(b.array[:num_dofs], A_R.data[:num_dofs], atol=tol)
else:
assert num_local_rows == 0
@pytest.mark.parametrize("dtype", [(PETSc.RealType, PETSc.ScalarType)])
@pytest.mark.parametrize("tensor", [0, 1, 2])
@pytest.mark.parametrize("degree", range(1, 5))
def test_singular_poisson(tensor, degree, dtype):
M = 9
rtype, stype = dtype
mesh = dolfinx.mesh.create_unit_square(
MPI.COMM_WORLD, M, M, dolfinx.mesh.CellType.triangle, dtype=rtype
)
if tensor == 0:
value_shape = ()
elif tensor == 1:
value_shape = (2,)
else:
value_shape = (3, 2)
V = dolfinx.fem.functionspace(mesh, ("Lagrange", degree, value_shape))
R = scifem.create_real_functionspace(mesh, value_shape)
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
c = ufl.TrialFunction(R)
d = ufl.TestFunction(R)
x = ufl.SpatialCoordinate(mesh)
pol = x[0] ** degree - 2 * x[1] ** degree
# Compute average value of polynomial to make mean 0
C = mesh.comm.allreduce(
dolfinx.fem.assemble_scalar(dolfinx.fem.form(pol * ufl.dx, dtype=stype)), op=MPI.SUM
)
u_scalar = pol - dolfinx.fem.Constant(mesh, stype(C))
if tensor == 0:
u_ex = u_scalar
zero = dolfinx.fem.Constant(mesh, stype(0.0))
elif tensor == 1:
u_ex = ufl.as_vector([u_scalar, -u_scalar])
zero = dolfinx.fem.Constant(mesh, stype((0.0, 0.0)))
else:
u_ex = ufl.as_tensor(
[
[u_scalar, 2 * u_scalar],
[3 * u_scalar, -u_scalar],
[u_scalar, 2 * u_scalar],
]
)
zero = dolfinx.fem.Constant(mesh, stype(((0.0, 0.0), (0.0, 0.0), (0.0, 0.0))))
dx = ufl.Measure("dx", domain=mesh)
f = -ufl.div(ufl.grad(u_ex))
n = ufl.FacetNormal(mesh)
g = ufl.dot(ufl.grad(u_ex), n)
a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
a01 = ufl.inner(c, v) * dx
a10 = ufl.inner(u, d) * dx
L0 = ufl.inner(f, v) * dx + ufl.inner(g, v) * ufl.ds
L1 = ufl.inner(zero, d) * dx
a = dolfinx.fem.form([[a00, a01], [a10, None]], dtype=stype)
L = dolfinx.fem.form([L0, L1], dtype=stype)
new_assemble_mode = False
try:
A = dolfinx.fem.petsc.assemble_matrix_block(a)
except AttributeError:
new_assemble_mode = True
A = dolfinx.fem.petsc.assemble_matrix(a, kind="mpi")
A.assemble()
if new_assemble_mode:
b = dolfinx.fem.petsc.create_vector(dolfinx.fem.extract_function_spaces(L), kind="mpi")
else:
b = dolfinx.fem.petsc.create_vector_block(L)
with b.localForm() as loc:
loc.set(0)
if new_assemble_mode:
dolfinx.fem.petsc.assemble_vector(b, L)
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
else:
dolfinx.fem.petsc.assemble_vector_block(b, L, a, bcs=[])
ksp = PETSc.KSP().create(mesh.comm)
ksp.setOperators(A)
ksp.setType("preonly")
pc = ksp.getPC()
pc.setType("lu")
pc.setFactorSolverType("mumps")
if new_assemble_mode:
x = dolfinx.fem.petsc.create_vector(dolfinx.fem.extract_function_spaces(L), kind="mpi")
else:
x = dolfinx.fem.petsc.create_vector_block(L)
ksp.solve(b, x)
x.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
uh = dolfinx.fem.Function(V)
rh = dolfinx.fem.Function(R)
if new_assemble_mode:
dolfinx.fem.petsc.assign(x, [uh, rh])
else:
x_local = dolfinx.cpp.la.petsc.get_local_vectors(
x,
[
(V.dofmap.index_map, V.dofmap.index_map_bs),
(R.dofmap.index_map, R.dofmap.index_map_bs),
],
)
uh.x.array[: len(x_local[0])] = x_local[0]
uh.x.scatter_forward()
b.destroy()
x.destroy()
A.destroy()
ksp.destroy()
error = dolfinx.fem.form(ufl.inner(u_ex - uh, u_ex - uh) * dx, dtype=stype)
e_local = dolfinx.fem.assemble_scalar(error)
tol = 1e4 * np.finfo(stype).eps
e_global = np.sqrt(mesh.comm.allreduce(e_local, op=MPI.SUM))
assert np.isclose(e_global, 0, atol=tol)
@pytest.mark.parametrize("ftype, stype", [(np.float32, np.complex64), (np.float64, np.complex128)])
def test_complex_real_space(ftype, stype):
mesh = dolfinx.mesh.create_unit_interval(MPI.COMM_WORLD, 13, dtype=ftype)
val = (2 + 3j, -4 + 5j)
value_shape = (2,)
R = scifem.create_real_functionspace(mesh, value_shape=value_shape)
u = dolfinx.fem.Function(R, dtype=stype)
u.x.array[0] = val[0]
u.x.array[1] = val[1]
u.x.scatter_forward()
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 1, value_shape))
v = ufl.TestFunction(V)
L = ufl.inner(u, v) * ufl.dx
b = dolfinx.fem.assemble_vector(dolfinx.fem.form(L, dtype=stype))
b.scatter_reverse(dolfinx.la.InsertMode.add)
b.scatter_forward()
const = dolfinx.fem.Constant(mesh, stype(val))
L_const = ufl.inner(const, v) * ufl.dx
b_const = dolfinx.fem.assemble_vector(dolfinx.fem.form(L_const, dtype=stype))
b_const.scatter_reverse(dolfinx.la.InsertMode.add)
b_const.scatter_forward()
tol = 100 * np.finfo(stype).eps
np.testing.assert_allclose(b.array, b_const.array, atol=tol)
|