1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
"""
===========================
Covertype dataset benchmark
===========================
Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART
(decision tree), RandomForest and Extra-Trees on the forest covertype dataset
of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is
low dimensional with 54 features and a sparsity of approx. 23%. Here, we
consider the task of predicting class 1 (spruce/fir). The classification
performance of SGD is competitive with Liblinear while being two orders of
magnitude faster to train::
[..]
Classification performance:
===========================
Classifier train-time test-time error-rate
--------------------------------------------
Liblinear 11.8977s 0.0285s 0.2305
GaussianNB 3.5931s 0.6645s 0.3633
SGD 0.2924s 0.0114s 0.2300
CART 39.9829s 0.0345s 0.0476
RandomForest 794.6232s 1.0526s 0.0249
Extra-Trees 1401.7051s 1.1181s 0.0230
The same task has been used in a number of papers including:
* `"SVM Optimization: Inverse Dependence on Training Set Size"
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_
S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08.
* `"Pegasos: Primal estimated sub-gradient solver for svm"
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_
S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07.
* `"Training Linear SVMs in Linear Time"
<www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_
T. Joachims - In SIGKDD '06
[1] http://archive.ics.uci.edu/ml/datasets/Covertype
"""
from __future__ import division
print __doc__
# Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>
# License: BSD Style.
# $Id$
from time import time
import os
import numpy as np
from optparse import OptionParser
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn import metrics
op = OptionParser()
op.add_option("--classifiers",
dest="classifiers", default='liblinear,GaussianNB,SGD,CART',
help="comma-separated list of classifiers to benchmark. "
"default: %default. available: "
"liblinear,GaussianNB,SGD,CART,ExtraTrees,RandomForest")
op.print_help()
(opts, args) = op.parse_args()
if len(args) > 0:
op.error("this script takes no arguments.")
sys.exit(1)
######################################################################
## Download the data, if not already on disk
if not os.path.exists('covtype.data.gz'):
# Download the data
import urllib
print "Downloading data, Please Wait (11MB)..."
opener = urllib.urlopen(
'http://archive.ics.uci.edu/ml/'
'machine-learning-databases/covtype/covtype.data.gz')
open('covtype.data.gz', 'wb').write(opener.read())
######################################################################
## Load dataset
print("Loading dataset...")
import gzip
f = gzip.open('covtype.data.gz')
X = np.fromstring(f.read().replace(",", " "), dtype=np.float64, sep=" ",
count=-1)
X = X.reshape((581012, 55))
f.close()
# class 1 vs. all others.
y = np.ones(X.shape[0]) * -1
y[np.where(X[:, -1] == 1)] = 1
X = X[:, :-1]
######################################################################
## Create train-test split (as [Joachims, 2006])
print("Creating train-test split...")
idx = np.arange(X.shape[0])
np.random.seed(13)
np.random.shuffle(idx)
train_idx = idx[:522911]
test_idx = idx[522911:]
X_train = X[train_idx]
y_train = y[train_idx]
X_test = X[test_idx]
y_test = y[test_idx]
# free memory
del X
del y
######################################################################
## Standardize first 10 features (the numerical ones)
mean = X_train.mean(axis=0)
std = X_train.std(axis=0)
mean[10:] = 0.0
std[10:] = 1.0
X_train = (X_train - mean) / std
X_test = (X_test - mean) / std
######################################################################
## Print dataset statistics
print("")
print("Dataset statistics:")
print("===================")
print("%s %d" % ("number of features:".ljust(25),
X_train.shape[1]))
print("%s %d" % ("number of classes:".ljust(25),
np.unique(y_train).shape[0]))
print("%s %d (%d, %d)" % ("number of train samples:".ljust(25),
X_train.shape[0], np.sum(y_train == 1),
np.sum(y_train == -1)))
print("%s %d (%d, %d)" % ("number of test samples:".ljust(25),
X_test.shape[0], np.sum(y_test == 1),
np.sum(y_test == -1)))
classifiers = dict()
######################################################################
## Benchmark classifiers
def benchmark(clf):
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
err = metrics.zero_one(y_test, pred) / float(pred.shape[0])
return err, train_time, test_time
######################################################################
## Train Liblinear model
liblinear_parameters = {
'loss': 'l2',
'penalty': 'l2',
'C': 1000,
'dual': False,
'tol': 1e-3,
}
classifiers['liblinear'] = LinearSVC(**liblinear_parameters)
######################################################################
## Train GaussianNB model
classifiers['GaussianNB'] = GaussianNB()
######################################################################
## Train SGD model
sgd_parameters = {
'alpha': 0.001,
'n_iter': 2,
}
classifiers['SGD'] = SGDClassifier( **sgd_parameters)
######################################################################
## Train CART model
classifiers['CART'] = DecisionTreeClassifier(min_samples_split=5,
max_depth=None)
######################################################################
## Train RandomForest model
classifiers['RandomForest'] = RandomForestClassifier(n_estimators=20,
min_samples_split=5,
max_features=None,
max_depth=None)
######################################################################
## Train Extra-Trees model
classifiers['ExtraTrees'] = ExtraTreesClassifier(n_estimators=20,
min_samples_split=5,
max_features=None,
max_depth=None)
selected_classifiers = opts.classifiers.split(',')
for name in selected_classifiers:
if name not in classifiers:
op.error('classifier %r unknwon')
sys.exit(1)
print("")
print("Training Classifiers")
print("====================")
print("")
err, train_time, test_time = {}, {}, {}
for name in sorted(selected_classifiers):
print("Training %s ..." % name)
err[name], train_time[name], test_time[name] = benchmark(classifiers[name])
######################################################################
## Print classification performance
print("")
print("Classification performance:")
print("===========================")
print("")
def print_row(clf_type, train_time, test_time, err):
print("%s %s %s %s" % (clf_type.ljust(12),
("%.4fs" % train_time).center(10),
("%.4fs" % test_time).center(10),
("%.4f" % err).center(10)))
print("%s %s %s %s" % ("Classifier ", "train-time", "test-time",
"error-rate"))
print("-" * 44)
for name in sorted(selected_classifiers, key=lambda name: err[name]):
print_row(name, train_time[name], test_time[name], err[name])
print("")
print("")
|