File: mldata.inc

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (72 lines) | stat: -rw-r--r-- 2,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
    For doctests:

    >>> import numpy as np
    >>> import os

.. _mldata:

Downloading datasets from the mldata.org repository
===================================================

`mldata.org <http://mldata.org>`_ is a public repository for machine learning
data, supported by the `PASCAL network <http://www.pascal-network.org>`_ .

The ``sklearn.datasets`` package is able to directly download data
sets from the repository using the function ``fetch_mldata(dataname)``.

For example, to download the MNIST digit recognition database::

  >>> from sklearn.datasets import fetch_mldata
  >>> mnist = fetch_mldata('MNIST original', data_home=custom_data_home)

The MNIST database contains a total of 70000 examples of handwritten digits
of size 28x28 pixels, labeled from 0 to 9::

  >>> mnist.data.shape
  (70000, 784)
  >>> mnist.target.shape
  (70000,)
  >>> np.unique(mnist.target)
  array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])

After the first download, the dataset is cached locally in the path
specified by the ``data_home`` keyword argument, which defaults to
``~/scikit_learn_data/``::

  >>> os.listdir(os.path.join(custom_data_home, 'mldata'))
  ['mnist-original.mat']

Data sets in `mldata.org <http://mldata.org>`_ do not adhere to a strict
naming or formatting convention. ``fetch_mldata`` is able to make sense
of the most common cases, but allows to tailor the defaults to individual
datasets:

* The data arrays in `mldata.org <http://mldata.org>`_ are most often
  shaped as ``(n_features, n_samples)``. This is the opposite of the
  ``scikit-learn`` convention, so ``fetch_mldata`` transposes the matrix
  by default. The ``transpose_data`` keyword controls this behavior::

    >>> iris = fetch_mldata('iris', data_home=custom_data_home)
    >>> iris.data.shape
    (150, 4)
    >>> iris = fetch_mldata('iris', transpose_data=False,
    ...                     data_home=custom_data_home)
    >>> iris.data.shape
    (4, 150)

* For datasets with multiple columns, ``fetch_mldata`` tries to identify
  the target and data columns and rename them to ``target`` and ``data``.
  This is done by looking for arrays named ``label`` and ``data`` in the
  dataset, and failing that by choosing the first array to be ``target``
  and the second to be ``data``. This behavior can be changed with the
  ``target_name`` and ``data_name`` keywords, setting them to a specific
  name or index number (the name and order of the columns in the datasets
  can be found at its `mldata.org <http://mldata.org>`_ under the tab "Data"::

    >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, data_name=0,
    ...                      data_home=custom_data_home)
    >>> iris3 = fetch_mldata('datasets-UCI iris', target_name='class',
    ...                      data_name='double0', data_home=custom_data_home)