File: linear_model.rst

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (637 lines) | stat: -rw-r--r-- 22,408 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
.. _linear_model:

=========================
Generalized Linear Models
=========================

.. currentmodule:: sklearn.linear_model

The following are a set of methods intended for regression in which
the target value is expected to be a linear combination of the input
variables. In mathematical notion, if :math:`\hat{y}` is the predicted
value.

.. math::    \hat{y}(w, x) = w_0 + w_1 x_1 + ... + w_p x_p

Across the module, we designate the vector :math:`w = (w_1,
..., w_p)` as ``coef_`` and :math:`w_0` as ``intercept_``.

To perform classification with generalized linear models, see
:ref:`Logistic_regression`.


.. _ordinary_least_squares:

Ordinary Least Squares
=======================

:class:`LinearRegression` fits a linear model with coefficients
:math:`w = (w_1, ..., w_p)` to minimize the residual sum
of squares between the observed responses in the dataset, and the
responses predicted by the linear approximation. Mathematically it
solves a problem of the form:

.. math:: \underset{w}{min\,} {|| X w - y||_2}^2

.. figure:: ../auto_examples/linear_model/images/plot_ols_1.png
   :target: ../auto_examples/linear_model/plot_ols.html
   :align: center
   :scale: 50%

:class:`LinearRegression` will take in its `fit` method arrays X, y
and will store the coefficients :math:`w` of the linear model in its
`coef\_` member::

    >>> from sklearn import linear_model
    >>> clf = linear_model.LinearRegression()
    >>> clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
    LinearRegression(copy_X=True, fit_intercept=True, normalize=False)
    >>> clf.coef_
    array([ 0.5,  0.5])

However, coefficient estimates for Ordinary Least Squares rely on the
independence of the model terms. When terms are correlated and the
columns of the design matrix :math:`X` have an approximate linear
dependence, the design matrix becomes close to singular
and as a result, the least-squares estimate becomes highly sensitive
to random errors in the observed response, producing a large
variance. This situation of *multicollinearity* can arise, for
example, when data are collected without an experimental design.

.. topic:: Examples:

   * :ref:`example_linear_model_plot_ols.py`


Ordinary Least Squares Complexity
---------------------------------

This method computes the least squares solution using a singular value
decomposition of X. If X is a matrix of size (n, p) this method has a
cost of :math:`O(n p^2)`, assuming that :math:`n \geq p`.


Ridge Regression
================

:class:`Ridge` regression addresses some of the problems of
:ref:`ordinary_least_squares` by imposing a penalty on the size of
coefficients. The ridge coefficients minimize a penalized residual sum
of squares,


.. math::

   \underset{w}{min\,} {{|| X w - y||_2}^2 + \alpha {||w||_2}^2}


Here, :math:`\alpha \geq 0` is a complexity parameter that controls the amount
of shrinkage: the larger the value of :math:`\alpha`, the greater the amount
of shrinkage and thus the coefficients become more robust to collinearity.

.. figure:: ../auto_examples/linear_model/images/plot_ridge_path_1.png
   :target: ../auto_examples/linear_model/plot_ridge_path.html
   :align: center
   :scale: 50%


As with other linear models, :class:`Ridge` will take in its `fit` method
arrays X, y and will store the coefficients :math:`w` of the linear model in
its `coef\_` member::

    >>> from sklearn import linear_model
    >>> clf = linear_model.Ridge (alpha = .5)
    >>> clf.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
    Ridge(alpha=0.5, copy_X=True, fit_intercept=True, normalize=False, tol=0.001)
    >>> clf.coef_
    array([ 0.34545455,  0.34545455])
    >>> clf.intercept_ #doctest: +ELLIPSIS
    0.13636...


.. topic:: Examples:

   * :ref:`example_linear_model_plot_ridge_path.py`
   * :ref:`example_document_classification_20newsgroups.py`


Ridge Complexity
----------------

This method has the same order of complexity than an
:ref:`ordinary_least_squares`.

.. FIXME:
.. Not completely true: OLS is solved by an SVD, while Ridge is solved by
.. the method of normal equations (Cholesky), there is a big flop difference
.. between these


Setting the regularization parameter: generalized Cross-Validation
------------------------------------------------------------------

:class:`RidgeCV` implements ridge regression with built-in
cross-validation of the alpha parameter.  The object works in the same way
as GridSearchCV except that it defaults to Generalized Cross-Validation
(GCV), an efficient form of leave-one-out cross-validation::

    >>> from sklearn import linear_model
    >>> clf = linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0])
    >>> clf.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1])       # doctest: +SKIP
    RidgeCV(alphas=[0.1, 1.0, 10.0], cv=None, fit_intercept=True, loss_func=None,
        normalize=False, score_func=None)
    >>> clf.best_alpha                                      # doctest: +SKIP
    0.1

.. topic:: References

    * "Notes on Regularized Least Squares", Rifkin & Lippert (`technical report
      <http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf>`_,
      `course slides
      <http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf>`_).


.. _lasso:

Lasso
=====

The :class:`Lasso` is a linear model that estimates sparse coefficients.
It is useful in some contexts due to its tendency to prefer solutions
with fewer parameter values, effectively reducing the number of variables
upon which the given solution is dependent. For this reason, the Lasso
and its variants are fundamental to the field of compressed sensing.
Under certain conditions, it can recover the exact set of non-zero
weights (see
:ref:`example_applications_plot_tomography_l1_reconstruction.py`).

Mathematically, it consists of a linear model trained with :math:`\ell_1` prior
as regularizer. The objective function to minimize is:

.. math::  \underset{w}{min\,} { \frac{1}{2n_{samples}} ||X w - y||_2 ^ 2 + \alpha ||w||_1}

The lasso estimate thus solves the minimization of the
least-squares penalty with :math:`\alpha ||w||_1` added, where
:math:`\alpha` is a constant and :math:`||w||_1` is the :math:`\ell_1`-norm of
the parameter vector.

The implementation in the class :class:`Lasso` uses coordinate descent as
the algorithm to fit the coefficients. See :ref:`least_angle_regression`
for another implementation::

    >>> clf = linear_model.Lasso(alpha = 0.1)
    >>> clf.fit([[0, 0], [1, 1]], [0, 1])
    Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
       normalize=False, positive=False, precompute='auto', tol=0.0001,
       warm_start=False)
    >>> clf.predict([[1, 1]])
    array([ 0.8])

Also useful for lower-level tasks is the function :func:`lasso_path` that
computes the coefficients along the full path of possible values.

.. topic:: Examples:

  * :ref:`example_linear_model_plot_lasso_and_elasticnet.py`
  * :ref:`example_applications_plot_tomography_l1_reconstruction.py`


.. note:: **Feature selection with Lasso**

      As the Lasso regression yields sparse models, it can
      thus be used to perform feature selection, as detailed in
      :ref:`l1_feature_selection`.


Setting regularization parameter
--------------------------------

The `alpha` parameter control the degree of sparsity of the coefficients
estimated.

Using cross-validation
^^^^^^^^^^^^^^^^^^^^^^^

scikit-learn exposes objects that set the Lasso `alpha` parameter by
cross-validation: :class:`LassoCV` and :class:`LassoLarsCV`.
:class:`LassoLarsCV` is based on the :ref:`least_angle_regression` algorithm
explained below.

For high-dimensional datasets with many collinear regressors,
:class:`LassoCV` is most often preferrable. How, :class:`LassoLarsCV` has
the advantage of exploring more relevant values of `alpha` parameter, and
if the number of samples is very small compared to the number of
observations, it is often faster than :class:`LassoCV`.

.. |lasso_cv_1| image:: ../auto_examples/linear_model/images/plot_lasso_model_selection_2.png
    :target: ../auto_examples/linear_model/plot_lasso_model_selection.html
    :scale: 50%

.. |lasso_cv_2| image:: ../auto_examples/linear_model/images/plot_lasso_model_selection_3.png
    :target: ../auto_examples/linear_model/plot_lasso_model_selection.html
    :scale: 50%

|lasso_cv_1| |lasso_cv_2|


Information-criteria based model selection
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Alternatively, the estimator :class:`LassoLarsIC` proposes to use the
Akaike information criterion (AIC) and the Bayes Information criterion (BIC).
It is a computationally cheaper alternative to find the optimal value of alpha
as the regularization path is computed only once instead of k+1 times
when using k-fold cross-validation. However, such criteria needs a
proper estimation of the degrees of freedom of the solution, are
derived for large samples (asymptotic results) and assume the model
is correct, i.e. that the data are actually generated by this model.
They also tend to break when the problem is badly conditioned
(more features than samples).

.. figure:: ../auto_examples/linear_model/images/plot_lasso_model_selection_1.png
    :target: ../auto_examples/linear_model/plot_lasso_model_selection.html
    :align: center
    :scale: 50%


.. topic:: Examples:

  * :ref:`example_linear_model_plot_lasso_model_selection.py`


Elastic Net
===========
:class:`ElasticNet` is a linear model trained with L1 and L2 prior as
regularizer.

The objective function to minimize is in this case

.. math::

    \underset{w}{min\,} { \frac{1}{2n_{samples}} ||X w - y||_2 ^ 2 + \alpha \rho ||w||_1 +
    \frac{\alpha(1-\rho)}{2} ||w||_2 ^ 2}


.. figure:: ../auto_examples/linear_model/images/plot_lasso_coordinate_descent_path_1.png
   :target: ../auto_examples/linear_model/plot_lasso_coordinate_descent_path.html
   :align: center
   :scale: 50%

The class :class:`ElasticNetCV` can be used to set the parameters `alpha`
and `rho` by cross-validation.

.. topic:: Examples:

  * :ref:`example_linear_model_plot_lasso_and_elasticnet.py`
  * :ref:`example_linear_model_plot_lasso_coordinate_descent_path.py`


.. _least_angle_regression:

Least Angle Regression
======================

Least-angle regression (LARS) is a regression algorithm for
high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain
Johnstone and Robert Tibshirani.

The advantages of LARS are:

  - It is numerically efficient in contexts where p >> n (i.e., when the
    number of dimensions is significantly greater than the number of
    points)

  - It is computationally just as fast as forward selection and has
    the same order of complexity as an ordinary least squares.

  - It produces a full piecewise linear solution path, which is
    useful in cross-validation or similar attempts to tune the model.

  - If two variables are almost equally correlated with the response,
    then their coefficients should increase at approximately the same
    rate. The algorithm thus behaves as intuition would expect, and
    also is more stable.

  - It is easily modified to produce solutions for other estimators,
    like the Lasso.

The disadvantages of the LARS method include:

  - Because LARS is based upon an iterative refitting of the
    residuals, it would appear to be especially sensitive to the
    effects of noise. This problem is discussed in detail by Weisberg
    in the discussion section of the Efron et al. (2004) Annals of
    Statistics article.

The LARS model can be used using estimator :class:`Lars`, or its
low-level implementation :func:`lars_path`.


LARS Lasso
==========

:class:`LassoLars` is a lasso model implemented using the LARS
algorithm, and unlike the implementation based on coordinate_descent,
this yields the exact solution, which is piecewise linear as a
function of the norm of its coefficients.

.. figure:: ../auto_examples/linear_model/images/plot_lasso_lars_1.png
   :target: ../auto_examples/linear_model/plot_lasso_lars.html
   :align: center
   :scale: 50%

::

   >>> from sklearn import linear_model
   >>> clf = linear_model.LassoLars(alpha=.1)
   >>> clf.fit([[0, 0], [1, 1]], [0, 1])                # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
   LassoLars(alpha=0.1, copy_X=True, eps=..., fit_intercept=True,
        max_iter=500, normalize=True, precompute='auto', verbose=False)
   >>> clf.coef_    # doctest: +ELLIPSIS
   array([ 0.717157...,  0.        ])

.. topic:: Examples:

 * :ref:`example_linear_model_plot_lasso_lars.py`

The Lars algorithm provides the full path of the coefficients along
the regularization parameter almost for free, thus a common operation
consist of retrieving the path with function :func:`lars_path`

Mathematical formulation
------------------------

The algorithm is similar to forward stepwise regression, but instead
of including variables at each step, the estimated parameters are
increased in a direction equiangular to each one's correlations with
the residual.

Instead of giving a vector result, the LARS solution consists of a
curve denoting the solution for each value of the L1 norm of the
parameter vector. The full coeffients path is stored in the array
``coef_path_``, which has size (n_features, max_features+1). The first
column is always zero.

.. topic:: References:

 * Original Algorithm is detailed in the paper `Least Angle Regression
   <http://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf>`_
   by Hastie et al.


.. _omp:

Orthogonal Matching Pursuit (OMP)
=================================
:class:`OrthogonalMatchingPursuit` and :func:`orthogonal_mp` implements the OMP
algorithm for approximating the fit of a linear model with constraints imposed
on the number of non-zero coefficients (ie. the L :sub:`0` pseudo-norm).

Being a forward feature selection method like :ref:`least_angle_regression`,
orthogonal matching pursuit can approximate the optimum solution vector with a
fixed number of non-zero elements:

.. math:: \text{arg\,min\,} ||y - X\gamma||_2^2 \text{ subject to } \
    ||\gamma||_0 \leq n_{nonzero_coefs}

Alternatively, orthogonal matching pursuit can target a specific error instead
of a specific number of non-zero coefficients. This can be expressed as:

.. math:: \text{arg\,min\,} ||\gamma||_0 \text{ subject to } ||y-X\gamma||_2^2 \
    \leq \text{tol}


OMP is based on a greedy algorithm that includes at each step the atom most
highly correlated with the current residual. It is similar to the simpler
matching pursuit (MP) method, but better in that at each iteration, the
residual is recomputed using an orthogonal projection on the space of the
previously chosen dictionary elements.


.. topic:: Examples:

 * :ref:`example_linear_model_plot_omp.py`

.. topic:: References:

 * http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

 * `Matching pursuits with time-frequency dictionaries
   <http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf>`_,
   S. G. Mallat, Z. Zhang,

Bayesian Regression
===================

Bayesian regression techniques can be used to include regularization
parameters in the estimation procedure: the regularization parameter is
not set in a hard sense but tuned to the data at hand.

This can be done by introducing `uninformative priors
<http://en.wikipedia.org/wiki/Non-informative_prior#Uninformative_priors>`__
over the hyper parameters of the model.
The :math:`\ell_{2}` regularization used in `Ridge Regression`_ is equivalent
to finding a maximum a-postiori solution under a Gaussian prior over the
parameters :math:`w` with precision :math:`\lambda^-1`.  Instead of setting
`\lambda` manually, it is possible to treat it as a random variable to be
estimated from the data.

To obtain a fully probabilistic model, the output :math:`y` is assumed
to be Gaussian distributed around :math:`X w`:

.. math::  p(y|X,w,\alpha) = \mathcal{N}(y|X w,\alpha)

Alpha is again treated as a random variable that is to be estimated from the
data.

The advantages of Bayesian Regression are:

    - It adapts to the data at hand.

    - It can be used to include regularization parameters in the
      estimation procedure.

The disadvantages of Bayesian regression include:

    - Inference of the model can be time consuming.


.. topic:: References

 * A good introduction to Bayesian methods is given in C. Bishop: Pattern
   Recognition and Machine learning

 * Original Algorithm is detailed in the  book `Bayesian learning for neural
   networks` by Radford M. Neal

.. _bayesian_ridge_regression:

Bayesian Ridge Regression
-------------------------

:class:`BayesianRidge` estimates a probabilistic model of the
regression problem as described above.
The prior for the parameter :math:`w` is given by a spherical Gaussian:

.. math:: p(w|\lambda) =
    \mathcal{N}(w|0,\lambda^{-1}\bold{I_{p}})

The priors over :math:`\alpha` and :math:`\lambda` are choosen to be `gamma
distributions <http://en.wikipedia.org/wiki/Gamma_distribution>`__, the
conjugate prior for the precision of the Gaussian.

The resulting model is called *Bayesian Ridge Regression*, and is similar to the
classical :class:`Ridge`.  The parameters :math:`w`, :math:`\alpha` and
:math:`\lambda` are estimated jointly during the fit of the model.  The
remaining hyperparameters are the parameters of the gamma priors over
:math:`\alpha` and :math:`\lambda`.  These are usually choosen to be
*non-informative*.  The parameters are estimated by maximizing the *marginal
log likelihood*.

By default :math:`\alpha_1 = \alpha_2 =  \lambda_1 = \lambda_2 = 1.e^{-6}`.


.. figure:: ../auto_examples/linear_model/images/plot_bayesian_ridge_1.png
   :target: ../auto_examples/linear_model/plot_bayesian_ridge.html
   :align: center
   :scale: 50%


Bayesian Ridge Regression is used for regression::

    >>> from sklearn import linear_model
    >>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
    >>> Y = [0., 1., 2., 3.]
    >>> clf = linear_model.BayesianRidge()
    >>> clf.fit(X, Y)
    BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
           fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
           normalize=False, tol=0.001, verbose=False)

After being fitted, the model can then be used to predict new values::

    >>> clf.predict ([[1, 0.]])
    array([ 0.50000013])


The weights :math:`w` of the model can be access::

    >>> clf.coef_
    array([ 0.49999993,  0.49999993])

Due to the Bayesian framework, the weights found are slightly different to the
ones found by :ref:`ordinary_least_squares`. However, Bayesian Ridge Regression
is more robust to ill-posed problem.

.. topic:: Examples:

 * :ref:`example_linear_model_plot_bayesian_ridge.py`

.. topic:: References

  * More details can be found in the article `Bayesian Interpolation
    <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.9072&rep=rep1&type=pdf>`_
    by MacKay, David J. C.



Automatic Relevance Determination - ARD
---------------------------------------

:class:`ARDRegression` is very similar to `Bayesian Ridge Regression`_,
but can lead to sparser weights :math:`w` [1]_.
:class:`ARDRegression` poses a different prior over :math:`w`, by dropping the
assuption of the Gaussian being spherical.

Instead, the distribution over :math:`w` is assumed to be an axis-parallel,
elliptical Gaussian distribution.

This means each weight :math:`w_{i}` is drawn from a Gaussian distribution,
centered on zero and with a precision :math:`\lambda_{i}`:

.. math:: p(w|\lambda) = \mathcal{N}(w|0,A^{-1})

with :math:`diag \; (A) = \lambda = \{\lambda_{1},...,\lambda_{p}\}`.

In constrast to `Bayesian Ridge Regression`_, each coordinate of :math:`w_{i}`
has its own standard deviation :math:`\lambda_i`. The prior over all
:math:`\lambda_i` is choosen to be the same gamma distribution given by
hyperparameters :math:`\lambda_1` and :math:`\lambda_2`.

.. figure:: ../auto_examples/linear_model/images/plot_ard_1.png
   :target: ../auto_examples/linear_model/plot_ard.html
   :align: center
   :scale: 50%


.. topic:: Examples:

  * :ref:`example_linear_model_plot_ard.py`

.. topic:: References:

    .. [1] David Wipf and Srikantan Nagarajan: `A new view of automatic relevance determination. <http://books.nips.cc/papers/files/nips20/NIPS2007_0976.pdf>`_

.. _Logistic_regression:

Logisitic regression
======================

If the task at hand is to choose which class a sample belongs to given
a finite (hopefuly small) set of choices, the learning problem is a
classification, rather than regression. Linear models can be used for
such a decision, but it is best to use what is called a
`logistic regression <http://en.wikipedia.org/wiki/Logistic_regression>`__,
that doesn't try to minimize the sum of square residuals, as in regression,
but rather a "hit or miss" cost.

The :class:`LogisticRegression` class can be used to do L1 or L2 penalized
logistic regression. L1 penalization yields sparse predicting weights.
For L1 penalization :func:`sklearn.svm.l1_min_c` allows to calculate
the lower bound for C in order to get a non "null" (all feature weights to
zero) model.

.. topic:: Examples:

  * :ref:`example_linear_model_plot_logistic_l1_l2_sparsity.py`

  * :ref:`example_linear_model_plot_logistic_path.py`

.. note:: **Feature selection with sparse logistic regression**

   A logistic regression with L1 penalty yields sparse models, and can
   thus be used to perform feature selection, as detailed in
   :ref:`l1_feature_selection`.

Stochastic Gradient Descent - SGD
=================================

Stochastic gradient descent is a simple yet very efficient approach
to fit linear models. It is particulary useful when the number of samples
(and the number of features) is very large.


The classes :class:`SGDClassifier` and :class:`SGDRegressor` provide
functionality to fit linear models for classification and regression
using different (convex) loss functions and different penalties.

.. topic:: References

 * :ref:`sgd`

Perceptron
==========

The :class:`Perceptron` is another simple algorithm suitable for large scale
learning. By default:

    - It does not require a learning rate.

    - It is not regularized (penalized).

    - It updates its model only on mistakes.

The last characteristic implies that the Perceptron is slightly faster to
train than SGD with the hinge loss and that the resulting models are
sparser.