File: neighbors.rst

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (408 lines) | stat: -rw-r--r-- 19,020 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
.. _neighbors:

=================
Nearest Neighbors
=================

.. sectionauthor:: Jake Vanderplas <vanderplas@astro.washington.edu>

.. currentmodule:: sklearn.neighbors

:mod:`sklearn.neighbors` provides functionality for unsupervised and
supervised neighbors-based learning methods.  Unsupervised nearest neighbors
is the foundation of many other learning methods,
notably manifold learning and spectral clustering.  Supervised neighbors-based
learning comes in two flavors: `classification`_ for data with
discrete labels, and `regression`_ for data with continuous labels.

The principle behind nearest neighbor methods is to find a predefined number
of training samples closest in distance to the new point, and
predict the label from these.  The number of samples can be a user-defined
constant (k-nearest neighbor learning), or vary based
on the local density of points (radius-based neighbor learning).
The distance can, in general, be any metric measure: standard Euclidean
distance is the most common choice.
Neighbors-based methods are known as *non-generalizing* machine
learning methods, since they simply "remember" all of its training data
(possibly transformed into a fast indexing structure such as a
:ref:`Ball Tree <ball_tree>` or :ref:`KD Tree <kd_tree>`.).

Despite its simplicity, nearest neighbors has been successful in a
large number of classification and regression problems, including
handwritten digits or satellite image scenes. It is often successful
in classification situations where the decision boundary is very irregular.

The classes in :mod:`sklearn.neighbors` can handle either Numpy arrays or
`scipy.sparse` matrices as input.  Arbitrary Minkowski metrics are supported 
for searches.


Unsupervised Nearest Neighbors
==============================

:class:`NearestNeighbors` implements unsupervised nearest neighbors learning.
It acts as a uniform interface to three different nearest neighbors
algorithms: :class:`BallTree`, :class:`scipy.spatial.cKDTree`, and a
brute-force algorithm based on routines in :mod:`sklearn.metrics.pairwise`.
The choice of neighbors search algorithm is controlled through the keyword
``'algorithm'``, which must be one of
``['auto', 'ball_tree', 'kd_tree', 'brute']``.  When the default value
``'auto'`` is passed, the algorithm attempts to determine the best approach
from the training data.  For a discussion of the strengths and weaknesses
of each option, see `Nearest Neighbor Algorithms`_.

.. _classification:

Nearest Neighbors Classification
================================

Neighbors-based classification is a type of *instance-based learning* or
*non-generalizing learning*: it does not attempt to construct a general
internal model, but simply stores instances of the training data.
Classification is computed from a simple majority vote of the nearest
neighbors of each point: a query point is assigned the data class which
has the most representatives within the nearest neighbors of the point.

scikit-learn implements two different nearest neighbors classifiers:
:class:`KNeighborsClassifier` implements learning based on the :math:`k`
nearest neighbors of each query point, where :math:`k` is an integer value
specified by the user.  :class:`RadiusNeighborsClassifier` implements learning
based on the number of neighbors within a fixed radius :math:`r` of each
training point, where :math:`r` is a floating-point value specified by
the user.

The :math:`k`-neighbors classification in :class:`KNeighborsClassifier`
is the more commonly used of the two techniques.  The
optimal choice of the value :math:`k` is highly data-dependent: in general
a larger :math:`k` suppresses the effects of noise, but makes the
classification boundaries less distinct.

In cases where the data is not uniformly sampled, radius-based neighbors
classification in :class:`RadiusNeighborsClassifier` can be a better choice.
The user specifies a fixed radius :math:`r`, such that points in sparser
neighborhoods use fewer nearest neighbors for the classification.  For
high-dimensional parameter spaces, this method becomes less effective due
to the so-called "curse of dimensionality".

The basic nearest neighbors classification uses uniform weights: that is, the
value assigned to a query point is computed from a simple majority vote of
the nearest neighbors.  Under some circumstances, it is better to weight the
neighbors such that nearer neighbors contribute more to the fit.  This can
be accomplished through the ``weights`` keyword.  The default value,
``weights = 'uniform'``, assigns uniform weights to each neighbor.
``weights = 'distance'`` assigns weights proportional to the inverse of the
distance from the query point.  Alternatively, a user-defined function of the
distance can be supplied which is used to compute the weights.



.. |classification_1| image:: ../auto_examples/neighbors/images/plot_classification_1.png
   :target: ../auto_examples/neighbors/plot_classification.html
   :scale: 50

.. |classification_2| image:: ../auto_examples/neighbors/images/plot_classification_2.png
   :target: ../auto_examples/neighbors/plot_classification.html
   :scale: 50

.. centered:: |classification_1| |classification_2|

.. topic:: Examples:

  * :ref:`example_neighbors_plot_classification.py`: an example of
    classification using nearest neighbors.

.. _regression:

Nearest Neighbors Regression
============================

Neighbors-based regression can be used in cases where the data labels are
continuous rather than discrete variables.  The label assigned to a query
point is computed based the mean of the labels of its nearest neighbors.

scikit-learn implements two different neighbors regressors:
:class:`KNeighborsRegressor` implements learning based on the :math:`k`
nearest neighbors of each query point, where :math:`k` is an integer
value specified by the user.  :class:`RadiusNeighborsRegressor` implements
learning based on the neighbors within a fixed radius :math:`r` of the
query point, where :math:`r` is a floating-point value specified by the
user.

The basic nearest neighbors regression uses uniform weights: that is,
each point in the local neighborhood contributes uniformly to the
classification of a query point.  Under some circumstances, it can be
advantageous to weight points such that nearby points contribute more
to the regression than faraway points.  This can be accomplished through
the ``weights`` keyword.  The default value, ``weights = 'uniform'``,
assigns equal weights to all points.  ``weights = 'distance'`` assigns
weights proportional to the inverse of the distance from the query point.
Alternatively, a user-defined function of the distance can be supplied,
which will be used to compute the weights.

.. figure:: ../auto_examples/neighbors/images/plot_regression_1.png
   :target: ../auto_examples/neighbors/plot_regression.html
   :align: center
   :scale: 75


.. topic:: Examples:

  * :ref:`example_neighbors_plot_regression.py`: an example of regression
    using nearest neighbors.


Nearest Neighbor Algorithms
===========================

.. _brute_force:

Brute Force
-----------

Fast computation of nearest neighbors is an active area of research in
machine learning.  The most naive neighbor search implementation involves
the brute-force computation of distances between all pairs of points in the
dataset: for :math:`N` samples in :math:`D` dimensions, this approach scales
as :math:`O[D N^2]`.  Efficient brute-force neighbors searches can be very
competetive for small data samples.
However, as the number of samples :math:`N` grows, the brute-force
approach quickly becomes infeasible.  In the classes within
:mod:`sklearn.neighbors`, brute-force neighbors searches are specified
using the keyword ``algorithm = 'brute'``, and are computed using the
routines available in :mod:`sklearn.metrics.pairwise`.

.. _kd_tree:

K-D Tree
--------

To address the computational inefficiencies of the brute-force approach, a
variety of tree-based data structures have been invented.  In general, these
structures attempt to reduce the required number of distance calculations
by efficiently encoding aggregate distance information for the sample.
The basic idea is that if point :math:`A` is very distant from point
:math:`B`, and point :math:`B` is very close to point :math:`C`,
then we know that points :math:`A` and :math:`C`
are very distant, *without having to explicitly calculate their distance*.
In this way, the computational cost of a nearest neighbors search can be
reduced to :math:`O[D N \log(N)]` or better.  This is a significant
improvement over brute-force for large :math:`N`.

An early approach to taking advantage of this aggregate information was
the *KD tree* data structure (short for *K-dimensional tree*), which
generalizes two-dimensional *Quad-trees* and 3-dimensional *Oct-trees*
to an arbitrary number of dimensions.  The KD tree is a tree
structure which recursively partitions the parameter space along the data
axes, deviding it into nested orthotopic regions into which data points
are filed.  The construction of a KD tree is very fast: because partitioning
is performed only along the data axes, no :math:`D`-dimensional distances
need to be computed.  Once constructed, the nearest neighbor of a query
point can be determined with only :math:`O[\log(N)]` distance computations.
Though the KD tree approach is very fast for low-dimensional (:math:`D < 20`)
neighbors searches, it becomes inefficient as :math:`D` grows very large:
this is one manifestation of the so-called "curse of dimensionality".
In scikit-learn, KD tree neighbors searches are specified using the
keyword ``algorithm = 'kd_tree'``, and are computed using the class
:class:`scipy.spatial.cKDTree`.


.. topic:: References:

   * `"Multidimensional binary search trees used for associative searching"
     <http://dl.acm.org/citation.cfm?doid=361002.361007>`_,
     Bentley, J.L., Communications of the ACM (1975)


.. _ball_tree:

Ball Tree
---------

To address the inefficiencies of KD Trees in higher dimensions, the *ball tree*
data structure was developed.  Where KD trees partition data along
cartesian axes, ball trees partition data in a series of nesting
hyper-spheres.  This makes tree construction more costly than that of the
KD tree, but
results in a data structure which allows for efficient neighbors searches
even in very high dimensions.

A ball tree recursively divides the data into
nodes defined by a centroid :math:`C` and radius :math:`r`, such that each
point in the node lies within the hyper-sphere defined by :math:`r` and
:math:`C`. The number of candidate points for a neighbor search
is reduced through use of the *triangle inequality*:

.. math::   |x+y| \leq |x| + |y|

With this setup, a single distance calculation between a test point and
the centroid is sufficient to determine a lower and upper bound on the
distance to all points within the node.
Because of the spherical geometry of the ball tree nodes, its performance
does not degrade at high dimensions.  In scikit-learn, ball-tree-based
neighbors searches are specified using the keyword ``algorithm = 'ball_tree'``,
and are computed using the class :class:`sklearn.neighbors.BallTree`.
Alternatively, the user can work with the :class:`BallTree` class directly.

.. topic:: References:

   * `"Five balltree construction algorithms"
     <http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.8209>`_,
     Omohundro, S.M., International Computer Science Institute
     Technical Report (1989)

Choice of Nearest Neighbors Algorithm
-------------------------------------
The optimal algorithm for a given dataset is a complicated choice, and
depends on a number of factors:

* number of samples :math:`N` (i.e. ``n_samples``) and dimensionality
  :math:`D` (i.e. ``n_features``).

  * *Brute force* query time grows as :math:`O[D N]`
  * *Ball tree* query time grows as approximately :math:`O[D \log(N)]`
  * *KD tree* query time changes with :math:`D` in a way that is difficult
    to precisely characterise.  For small :math:`D` (less than 20 or so)
    the cost is approximately :math:`O[D\log(N)]`, and the KD tree
    query can be very efficient.
    For larger :math:`D`, the cost increases to nearly `O[DN]`, and
    the overhead due to the tree
    structure can lead to queries which are slower than brute force.

  For small data sets (:math:`N` less than 30 or so), :math:`\log(N)` is
  comparable to :math:`N`, and brute force algorithms can be more efficient
  than a tree-based approach.  Both :class:`cKDTree` and :class:`BallTree`
  address this through providing a *leaf size* parameter: this controls the
  number of samples at which a query switches to brute-force.  This allows both
  algorithms to approach the efficiency of a brute-force computation for small
  :math:`N`.

* data structure: *intrinsic dimensionality* of the data and/or *sparsity*
  of the data. Intrinsic dimensionality refers to the dimension
  :math:`d \le D` of a manifold on which the data lies, which can be linearly
  or nonlinearly embedded in the parameter space. Sparsity refers to the
  degree to which the data fills the parameter space (this is to be
  distinguished from the concept as used in "sparse" matrices.  The data
  matrix may have no zero entries, but the **structure** can still be
  "sparse" in this sense).

  * *Brute force* query time is unchanged by data structure.
  * *Ball tree* and *KD tree* query times can be greatly influenced
    by data structure.  In general, sparser data with a smaller intrinsic
    dimensionality leads to faster query times.  Because the KD tree
    internal representation is aligned with the parameter axes, it will not
    generally show as much improvement as ball tree for arbitrarily
    structured data.

  Datasets used in machine learning tend to be very structured, and are
  very well-suited for tree-based queries.

* number of neighbors :math:`k` requested for a query point.

  * *Brute force* query time is largely unaffected by the value of :math:`k`
  * *Ball tree* and *KD tree* query time will become slower as :math:`k`
    increases.  This is due to two effects: first, a larger :math:`k` leads
    to the necessity to search a larger portion of the parameter space.
    Second, using :math:`k > 1` requires internal queueing of results
    as the tree is traversed.

  As :math:`k` becomes large compared to :math:`N`, the ability to prune
  branches in a tree-based query is reduced.  In this situation, Brute force
  queries can be more efficient.

* number of query points.  Both the ball tree and the KD Tree
  require a construction phase.  The cost of this construction becomes
  negligible when amortized over many queries.  If only a small number of
  queries will be performed, however, the construction can make up
  a significant fraction of the total cost.  If very few query points
  will be required, brute force is better than a tree-based method.

Currently, ``algorithm = 'auto'`` selects ``'ball_tree'`` if
:math:`k < N/2`, and ``'brute'`` otherwise.  This choice is based on
the assumption that the number of query points is at least the same order
as the number of training points, and that ``leaf_size`` is close to its
default value of ``30``.

Effect of ``leaf_size``
-----------------------
As noted above, for small sample sizes a brute force search can be more
efficient than a tree-based query.  This fact is accounted for in the ball
tree and KD tree by internally switching to brute force searches within
leaf nodes.  The level of this switch can be specified with the parameter
``leaf_size``.  This parameter choice has many effects:

**construction time**
  A larger ``leaf_size`` leads to a faster tree construction time, because
  fewer nodes need to be created

**query time**
  Both a large or small ``leaf_size`` can lead to suboptimal query cost.
  For ``leaf_size`` approaching 1, the overhead involved in traversing
  nodes can significantly slow query times.  For ``leaf_size`` approaching
  the size of the training set, queries become essentially brute force.
  A good compromise between these is ``leaf_size = 30``, the default value
  of the parameter.

**memory**
  As ``leaf_size`` increases, the memory required to store a tree structure
  decreases.  This is especially important in the case of ball tree, which
  stores a :math:`D`-dimensional centroid for each node.  The required
  storage space for :class:`BallTree` is approximately ``1 / leaf_size`` times
  the size of the training set.

``leaf_size`` is not referenced for brute force queries.


Nearest Centroid Classifier
===========================

The :class:`NearestCentroid` classifier is a simple algorithm that represents
each class by the centroid of its members. In effect, this makes it
similar to the label updating phase of the :class:`sklearn.KMeans` algorithm.
It also has no parameters to choose, making it a good baseline classifier. It
does, however, suffer on non-convex classes, as well as when classes have
drastically different variances, as equal variance in all dimensions is
assumed. See Linear Discriminant Analysis (:class:`sklearn.lda.LDA`) and
Quadratic Discriminant Analysis (:class:`sklearn.qda.QDA`) for more complex
methods that do not make this assumption. Usage of the default
:class:`NearestCentroid` is simple:

    >>> from sklearn.neighbors.nearest_centroid import NearestCentroid
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> clf = NearestCentroid()
    >>> clf.fit(X, y)
    NearestCentroid(metric='euclidean', shrink_threshold=None)
    >>> print clf.predict([[-0.8, -1]])
    [1]


Nearest Shrunken Centroid
-------------------------

The :class:`NearestCentroid` classifier has a `shrink_threshold` parameter,
which implements the nearest shrunken centroid classifier. In effect, the value
of each feature for each centroid is divided by the within-class variance of
that feature. The feature values are then reduced by `shrink_threshold`. Most
notably, if a particular feature value crosses zero, it is set
to zero. In effect, this removes the feature from affecting the classification.
This is useful, for example, for removing noisy features.

In the example below, using a small shrink threshold increases the accuracy of
the model from 0.81 to 0.82.

.. |nearest_centroid_1| image:: ../auto_examples/neighbors/images/plot_nearest_centroid_1.png
   :target: ../auto_examples/neighbors/plot_classification.html
   :scale: 50

.. |nearest_centroid_2| image:: ../auto_examples/neighbors/images/plot_nearest_centroid_2.png
   :target: ../auto_examples/neighbors/plot_classification.html
   :scale: 50

.. centered:: |nearest_centroid_1| |nearest_centroid_2|

.. topic:: Examples:

  * :ref:`example_neighbors_plot_nearest_centroid.py`: an example of
    classification using nearest centroid with different shrink thresholds.