1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
.. _neighbors:
=================
Nearest Neighbors
=================
.. sectionauthor:: Jake Vanderplas <vanderplas@astro.washington.edu>
.. currentmodule:: sklearn.neighbors
:mod:`sklearn.neighbors` provides functionality for unsupervised and
supervised neighbors-based learning methods. Unsupervised nearest neighbors
is the foundation of many other learning methods,
notably manifold learning and spectral clustering. Supervised neighbors-based
learning comes in two flavors: `classification`_ for data with
discrete labels, and `regression`_ for data with continuous labels.
The principle behind nearest neighbor methods is to find a predefined number
of training samples closest in distance to the new point, and
predict the label from these. The number of samples can be a user-defined
constant (k-nearest neighbor learning), or vary based
on the local density of points (radius-based neighbor learning).
The distance can, in general, be any metric measure: standard Euclidean
distance is the most common choice.
Neighbors-based methods are known as *non-generalizing* machine
learning methods, since they simply "remember" all of its training data
(possibly transformed into a fast indexing structure such as a
:ref:`Ball Tree <ball_tree>` or :ref:`KD Tree <kd_tree>`.).
Despite its simplicity, nearest neighbors has been successful in a
large number of classification and regression problems, including
handwritten digits or satellite image scenes. It is often successful
in classification situations where the decision boundary is very irregular.
The classes in :mod:`sklearn.neighbors` can handle either Numpy arrays or
`scipy.sparse` matrices as input. Arbitrary Minkowski metrics are supported
for searches.
Unsupervised Nearest Neighbors
==============================
:class:`NearestNeighbors` implements unsupervised nearest neighbors learning.
It acts as a uniform interface to three different nearest neighbors
algorithms: :class:`BallTree`, :class:`scipy.spatial.cKDTree`, and a
brute-force algorithm based on routines in :mod:`sklearn.metrics.pairwise`.
The choice of neighbors search algorithm is controlled through the keyword
``'algorithm'``, which must be one of
``['auto', 'ball_tree', 'kd_tree', 'brute']``. When the default value
``'auto'`` is passed, the algorithm attempts to determine the best approach
from the training data. For a discussion of the strengths and weaknesses
of each option, see `Nearest Neighbor Algorithms`_.
.. _classification:
Nearest Neighbors Classification
================================
Neighbors-based classification is a type of *instance-based learning* or
*non-generalizing learning*: it does not attempt to construct a general
internal model, but simply stores instances of the training data.
Classification is computed from a simple majority vote of the nearest
neighbors of each point: a query point is assigned the data class which
has the most representatives within the nearest neighbors of the point.
scikit-learn implements two different nearest neighbors classifiers:
:class:`KNeighborsClassifier` implements learning based on the :math:`k`
nearest neighbors of each query point, where :math:`k` is an integer value
specified by the user. :class:`RadiusNeighborsClassifier` implements learning
based on the number of neighbors within a fixed radius :math:`r` of each
training point, where :math:`r` is a floating-point value specified by
the user.
The :math:`k`-neighbors classification in :class:`KNeighborsClassifier`
is the more commonly used of the two techniques. The
optimal choice of the value :math:`k` is highly data-dependent: in general
a larger :math:`k` suppresses the effects of noise, but makes the
classification boundaries less distinct.
In cases where the data is not uniformly sampled, radius-based neighbors
classification in :class:`RadiusNeighborsClassifier` can be a better choice.
The user specifies a fixed radius :math:`r`, such that points in sparser
neighborhoods use fewer nearest neighbors for the classification. For
high-dimensional parameter spaces, this method becomes less effective due
to the so-called "curse of dimensionality".
The basic nearest neighbors classification uses uniform weights: that is, the
value assigned to a query point is computed from a simple majority vote of
the nearest neighbors. Under some circumstances, it is better to weight the
neighbors such that nearer neighbors contribute more to the fit. This can
be accomplished through the ``weights`` keyword. The default value,
``weights = 'uniform'``, assigns uniform weights to each neighbor.
``weights = 'distance'`` assigns weights proportional to the inverse of the
distance from the query point. Alternatively, a user-defined function of the
distance can be supplied which is used to compute the weights.
.. |classification_1| image:: ../auto_examples/neighbors/images/plot_classification_1.png
:target: ../auto_examples/neighbors/plot_classification.html
:scale: 50
.. |classification_2| image:: ../auto_examples/neighbors/images/plot_classification_2.png
:target: ../auto_examples/neighbors/plot_classification.html
:scale: 50
.. centered:: |classification_1| |classification_2|
.. topic:: Examples:
* :ref:`example_neighbors_plot_classification.py`: an example of
classification using nearest neighbors.
.. _regression:
Nearest Neighbors Regression
============================
Neighbors-based regression can be used in cases where the data labels are
continuous rather than discrete variables. The label assigned to a query
point is computed based the mean of the labels of its nearest neighbors.
scikit-learn implements two different neighbors regressors:
:class:`KNeighborsRegressor` implements learning based on the :math:`k`
nearest neighbors of each query point, where :math:`k` is an integer
value specified by the user. :class:`RadiusNeighborsRegressor` implements
learning based on the neighbors within a fixed radius :math:`r` of the
query point, where :math:`r` is a floating-point value specified by the
user.
The basic nearest neighbors regression uses uniform weights: that is,
each point in the local neighborhood contributes uniformly to the
classification of a query point. Under some circumstances, it can be
advantageous to weight points such that nearby points contribute more
to the regression than faraway points. This can be accomplished through
the ``weights`` keyword. The default value, ``weights = 'uniform'``,
assigns equal weights to all points. ``weights = 'distance'`` assigns
weights proportional to the inverse of the distance from the query point.
Alternatively, a user-defined function of the distance can be supplied,
which will be used to compute the weights.
.. figure:: ../auto_examples/neighbors/images/plot_regression_1.png
:target: ../auto_examples/neighbors/plot_regression.html
:align: center
:scale: 75
.. topic:: Examples:
* :ref:`example_neighbors_plot_regression.py`: an example of regression
using nearest neighbors.
Nearest Neighbor Algorithms
===========================
.. _brute_force:
Brute Force
-----------
Fast computation of nearest neighbors is an active area of research in
machine learning. The most naive neighbor search implementation involves
the brute-force computation of distances between all pairs of points in the
dataset: for :math:`N` samples in :math:`D` dimensions, this approach scales
as :math:`O[D N^2]`. Efficient brute-force neighbors searches can be very
competetive for small data samples.
However, as the number of samples :math:`N` grows, the brute-force
approach quickly becomes infeasible. In the classes within
:mod:`sklearn.neighbors`, brute-force neighbors searches are specified
using the keyword ``algorithm = 'brute'``, and are computed using the
routines available in :mod:`sklearn.metrics.pairwise`.
.. _kd_tree:
K-D Tree
--------
To address the computational inefficiencies of the brute-force approach, a
variety of tree-based data structures have been invented. In general, these
structures attempt to reduce the required number of distance calculations
by efficiently encoding aggregate distance information for the sample.
The basic idea is that if point :math:`A` is very distant from point
:math:`B`, and point :math:`B` is very close to point :math:`C`,
then we know that points :math:`A` and :math:`C`
are very distant, *without having to explicitly calculate their distance*.
In this way, the computational cost of a nearest neighbors search can be
reduced to :math:`O[D N \log(N)]` or better. This is a significant
improvement over brute-force for large :math:`N`.
An early approach to taking advantage of this aggregate information was
the *KD tree* data structure (short for *K-dimensional tree*), which
generalizes two-dimensional *Quad-trees* and 3-dimensional *Oct-trees*
to an arbitrary number of dimensions. The KD tree is a tree
structure which recursively partitions the parameter space along the data
axes, deviding it into nested orthotopic regions into which data points
are filed. The construction of a KD tree is very fast: because partitioning
is performed only along the data axes, no :math:`D`-dimensional distances
need to be computed. Once constructed, the nearest neighbor of a query
point can be determined with only :math:`O[\log(N)]` distance computations.
Though the KD tree approach is very fast for low-dimensional (:math:`D < 20`)
neighbors searches, it becomes inefficient as :math:`D` grows very large:
this is one manifestation of the so-called "curse of dimensionality".
In scikit-learn, KD tree neighbors searches are specified using the
keyword ``algorithm = 'kd_tree'``, and are computed using the class
:class:`scipy.spatial.cKDTree`.
.. topic:: References:
* `"Multidimensional binary search trees used for associative searching"
<http://dl.acm.org/citation.cfm?doid=361002.361007>`_,
Bentley, J.L., Communications of the ACM (1975)
.. _ball_tree:
Ball Tree
---------
To address the inefficiencies of KD Trees in higher dimensions, the *ball tree*
data structure was developed. Where KD trees partition data along
cartesian axes, ball trees partition data in a series of nesting
hyper-spheres. This makes tree construction more costly than that of the
KD tree, but
results in a data structure which allows for efficient neighbors searches
even in very high dimensions.
A ball tree recursively divides the data into
nodes defined by a centroid :math:`C` and radius :math:`r`, such that each
point in the node lies within the hyper-sphere defined by :math:`r` and
:math:`C`. The number of candidate points for a neighbor search
is reduced through use of the *triangle inequality*:
.. math:: |x+y| \leq |x| + |y|
With this setup, a single distance calculation between a test point and
the centroid is sufficient to determine a lower and upper bound on the
distance to all points within the node.
Because of the spherical geometry of the ball tree nodes, its performance
does not degrade at high dimensions. In scikit-learn, ball-tree-based
neighbors searches are specified using the keyword ``algorithm = 'ball_tree'``,
and are computed using the class :class:`sklearn.neighbors.BallTree`.
Alternatively, the user can work with the :class:`BallTree` class directly.
.. topic:: References:
* `"Five balltree construction algorithms"
<http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.8209>`_,
Omohundro, S.M., International Computer Science Institute
Technical Report (1989)
Choice of Nearest Neighbors Algorithm
-------------------------------------
The optimal algorithm for a given dataset is a complicated choice, and
depends on a number of factors:
* number of samples :math:`N` (i.e. ``n_samples``) and dimensionality
:math:`D` (i.e. ``n_features``).
* *Brute force* query time grows as :math:`O[D N]`
* *Ball tree* query time grows as approximately :math:`O[D \log(N)]`
* *KD tree* query time changes with :math:`D` in a way that is difficult
to precisely characterise. For small :math:`D` (less than 20 or so)
the cost is approximately :math:`O[D\log(N)]`, and the KD tree
query can be very efficient.
For larger :math:`D`, the cost increases to nearly `O[DN]`, and
the overhead due to the tree
structure can lead to queries which are slower than brute force.
For small data sets (:math:`N` less than 30 or so), :math:`\log(N)` is
comparable to :math:`N`, and brute force algorithms can be more efficient
than a tree-based approach. Both :class:`cKDTree` and :class:`BallTree`
address this through providing a *leaf size* parameter: this controls the
number of samples at which a query switches to brute-force. This allows both
algorithms to approach the efficiency of a brute-force computation for small
:math:`N`.
* data structure: *intrinsic dimensionality* of the data and/or *sparsity*
of the data. Intrinsic dimensionality refers to the dimension
:math:`d \le D` of a manifold on which the data lies, which can be linearly
or nonlinearly embedded in the parameter space. Sparsity refers to the
degree to which the data fills the parameter space (this is to be
distinguished from the concept as used in "sparse" matrices. The data
matrix may have no zero entries, but the **structure** can still be
"sparse" in this sense).
* *Brute force* query time is unchanged by data structure.
* *Ball tree* and *KD tree* query times can be greatly influenced
by data structure. In general, sparser data with a smaller intrinsic
dimensionality leads to faster query times. Because the KD tree
internal representation is aligned with the parameter axes, it will not
generally show as much improvement as ball tree for arbitrarily
structured data.
Datasets used in machine learning tend to be very structured, and are
very well-suited for tree-based queries.
* number of neighbors :math:`k` requested for a query point.
* *Brute force* query time is largely unaffected by the value of :math:`k`
* *Ball tree* and *KD tree* query time will become slower as :math:`k`
increases. This is due to two effects: first, a larger :math:`k` leads
to the necessity to search a larger portion of the parameter space.
Second, using :math:`k > 1` requires internal queueing of results
as the tree is traversed.
As :math:`k` becomes large compared to :math:`N`, the ability to prune
branches in a tree-based query is reduced. In this situation, Brute force
queries can be more efficient.
* number of query points. Both the ball tree and the KD Tree
require a construction phase. The cost of this construction becomes
negligible when amortized over many queries. If only a small number of
queries will be performed, however, the construction can make up
a significant fraction of the total cost. If very few query points
will be required, brute force is better than a tree-based method.
Currently, ``algorithm = 'auto'`` selects ``'ball_tree'`` if
:math:`k < N/2`, and ``'brute'`` otherwise. This choice is based on
the assumption that the number of query points is at least the same order
as the number of training points, and that ``leaf_size`` is close to its
default value of ``30``.
Effect of ``leaf_size``
-----------------------
As noted above, for small sample sizes a brute force search can be more
efficient than a tree-based query. This fact is accounted for in the ball
tree and KD tree by internally switching to brute force searches within
leaf nodes. The level of this switch can be specified with the parameter
``leaf_size``. This parameter choice has many effects:
**construction time**
A larger ``leaf_size`` leads to a faster tree construction time, because
fewer nodes need to be created
**query time**
Both a large or small ``leaf_size`` can lead to suboptimal query cost.
For ``leaf_size`` approaching 1, the overhead involved in traversing
nodes can significantly slow query times. For ``leaf_size`` approaching
the size of the training set, queries become essentially brute force.
A good compromise between these is ``leaf_size = 30``, the default value
of the parameter.
**memory**
As ``leaf_size`` increases, the memory required to store a tree structure
decreases. This is especially important in the case of ball tree, which
stores a :math:`D`-dimensional centroid for each node. The required
storage space for :class:`BallTree` is approximately ``1 / leaf_size`` times
the size of the training set.
``leaf_size`` is not referenced for brute force queries.
Nearest Centroid Classifier
===========================
The :class:`NearestCentroid` classifier is a simple algorithm that represents
each class by the centroid of its members. In effect, this makes it
similar to the label updating phase of the :class:`sklearn.KMeans` algorithm.
It also has no parameters to choose, making it a good baseline classifier. It
does, however, suffer on non-convex classes, as well as when classes have
drastically different variances, as equal variance in all dimensions is
assumed. See Linear Discriminant Analysis (:class:`sklearn.lda.LDA`) and
Quadratic Discriminant Analysis (:class:`sklearn.qda.QDA`) for more complex
methods that do not make this assumption. Usage of the default
:class:`NearestCentroid` is simple:
>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric='euclidean', shrink_threshold=None)
>>> print clf.predict([[-0.8, -1]])
[1]
Nearest Shrunken Centroid
-------------------------
The :class:`NearestCentroid` classifier has a `shrink_threshold` parameter,
which implements the nearest shrunken centroid classifier. In effect, the value
of each feature for each centroid is divided by the within-class variance of
that feature. The feature values are then reduced by `shrink_threshold`. Most
notably, if a particular feature value crosses zero, it is set
to zero. In effect, this removes the feature from affecting the classification.
This is useful, for example, for removing noisy features.
In the example below, using a small shrink threshold increases the accuracy of
the model from 0.81 to 0.82.
.. |nearest_centroid_1| image:: ../auto_examples/neighbors/images/plot_nearest_centroid_1.png
:target: ../auto_examples/neighbors/plot_classification.html
:scale: 50
.. |nearest_centroid_2| image:: ../auto_examples/neighbors/images/plot_nearest_centroid_2.png
:target: ../auto_examples/neighbors/plot_classification.html
:scale: 50
.. centered:: |nearest_centroid_1| |nearest_centroid_2|
.. topic:: Examples:
* :ref:`example_neighbors_plot_nearest_centroid.py`: an example of
classification using nearest centroid with different shrink thresholds.
|