1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
"""
======================================================
Classification of text documents using sparse features
======================================================
This is an example showing how the scikit-learn can be used to classify
documents by topics using a bag-of-words approach. This example uses
a scipy.sparse matrix to store the features instead of standard numpy arrays
and demos various classifiers that can efficiently handle sparse matrices.
The dataset used in this example is the 20 newsgroups dataset which will be
automatically downloaded and then cached.
You can adjust the number of categories by giving their names to the dataset
loader or setting them to None to get the 20 of them.
"""
# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# License: Simplified BSD
import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import pylab as pl
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.utils.extmath import density
from sklearn import metrics
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
# parse commandline arguments
op = OptionParser()
op.add_option("--report",
action="store_true", dest="print_report",
help="Print a detailed classification report.")
op.add_option("--chi2_select",
action="store", type="int", dest="select_chi2",
help="Select some number of features using a chi-squared test")
op.add_option("--confusion_matrix",
action="store_true", dest="print_cm",
help="Print the confusion matrix.")
op.add_option("--top10",
action="store_true", dest="print_top10",
help="Print ten most discriminative terms per class"
" for every classifier.")
(opts, args) = op.parse_args()
if len(args) > 0:
op.error("this script takes no arguments.")
sys.exit(1)
print __doc__
op.print_help()
print
###############################################################################
# Load some categories from the training set
categories = [
'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',
]
# Uncomment the following to do the analysis on all the categories
#categories = None
print "Loading 20 newsgroups dataset for categories:"
print categories if categories else "all"
data_train = fetch_20newsgroups(subset='train', categories=categories,
shuffle=True, random_state=42)
data_test = fetch_20newsgroups(subset='test', categories=categories,
shuffle=True, random_state=42)
print 'data loaded'
categories = data_train.target_names # for case categories == None
print "%d documents (training set)" % len(data_train.data)
print "%d documents (testing set)" % len(data_test.data)
print "%d categories" % len(categories)
print
# split a training set and a test set
y_train, y_test = data_train.target, data_test.target
print "Extracting features from the training dataset using a sparse vectorizer"
t0 = time()
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
X_train = vectorizer.fit_transform(data_train.data)
print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X_train.shape
print
print "Extracting features from the test dataset using the same vectorizer"
t0 = time()
X_test = vectorizer.transform(data_test.data)
print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X_test.shape
print
if opts.select_chi2:
print ("Extracting %d best features by a chi-squared test" %
opts.select_chi2)
t0 = time()
ch2 = SelectKBest(chi2, k=opts.select_chi2)
X_train = ch2.fit_transform(X_train, y_train)
X_test = ch2.transform(X_test)
print "done in %fs" % (time() - t0)
print
def trim(s):
"""Trim string to fit on terminal (assuming 80-column display)"""
return s if len(s) <= 80 else s[:77] + "..."
# mapping from integer feature name to original token string
feature_names = vectorizer.get_feature_names()
###############################################################################
# Benchmark classifiers
def benchmark(clf):
print 80 * '_'
print "Training: "
print clf
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print "train time: %0.3fs" % train_time
t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print "test time: %0.3fs" % test_time
score = metrics.f1_score(y_test, pred)
print "f1-score: %0.3f" % score
if hasattr(clf, 'coef_'):
print "dimensionality: %d" % clf.coef_.shape[1]
print "density: %f" % density(clf.coef_)
if opts.print_top10:
print "top 10 keywords per class:"
for i, category in enumerate(categories):
top10 = np.argsort(clf.coef_[i])[-10:]
print trim("%s: %s" % (
category, " ".join(feature_names[top10])))
print
if opts.print_report:
print "classification report:"
print metrics.classification_report(y_test, pred,
target_names=categories)
if opts.print_cm:
print "confusion matrix:"
print metrics.confusion_matrix(y_test, pred)
print
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time
results = []
for clf, name in ((RidgeClassifier(tol=1e-1), "Ridge Classifier"),
(Perceptron(n_iter=50), "Perceptron"),
(KNeighborsClassifier(n_neighbors=10), "kNN")):
print 80 * '='
print name
results.append(benchmark(clf))
for penalty in ["l2", "l1"]:
print 80 * '='
print "%s penalty" % penalty.upper()
# Train Liblinear model
results.append(benchmark(LinearSVC(loss='l2', penalty=penalty,
dual=False, tol=1e-3)))
# Train SGD model
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
penalty=penalty)))
# Train SGD with Elastic Net penalty
print 80 * '='
print "Elastic-Net penalty"
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
penalty="elasticnet")))
# Train NearestCentroid without threshold
print 80 * '='
print "NearestCentroid (aka Rocchio classifier)"
results.append(benchmark(NearestCentroid()))
# Train sparse Naive Bayes classifiers
print 80 * '='
print "Naive Bayes"
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))
class L1LinearSVC(LinearSVC):
def fit(self, X, y):
# The smaller C, the stronger the regularization.
# The more regularization, the more sparsity.
self.transformer_ = LinearSVC(penalty="l1",
dual=False, tol=1e-3)
X = self.transformer_.fit_transform(X, y)
return LinearSVC.fit(self, X, y)
def predict(self, X):
X = self.transformer_.transform(X)
return LinearSVC.predict(self, X)
print 80 * '='
print "LinearSVC with L1-based feature selection"
results.append(benchmark(L1LinearSVC()))
# make some plots
indices = np.arange(len(results))
results = [[x[i] for x in results] for i in xrange(4)]
clf_names, score, training_time, test_time = results
pl.title("Score")
pl.barh(indices, score, .2, label="score", color='r')
pl.barh(indices + .3, training_time, .2, label="training time", color='g')
pl.barh(indices + .6, test_time, .2, label="test time", color='b')
pl.yticks(())
pl.legend(loc='best')
pl.subplots_adjust(left=.25)
for i, c in zip(indices, clf_names):
pl.text(-.3, i, c)
pl.show()
|