File: document_classification_20newsgroups.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (264 lines) | stat: -rw-r--r-- 8,462 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
======================================================
Classification of text documents using sparse features
======================================================

This is an example showing how the scikit-learn can be used to classify
documents by topics using a bag-of-words approach. This example uses
a scipy.sparse matrix to store the features instead of standard numpy arrays
and demos various classifiers that can efficiently handle sparse matrices.

The dataset used in this example is the 20 newsgroups dataset which will be
automatically downloaded and then cached.

You can adjust the number of categories by giving their names to the dataset
loader or setting them to None to get the 20 of them.

"""

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Mathieu Blondel <mathieu@mblondel.org>
#         Lars Buitinck <L.J.Buitinck@uva.nl>
# License: Simplified BSD

import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import pylab as pl

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.utils.extmath import density
from sklearn import metrics


# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s %(levelname)s %(message)s')


# parse commandline arguments
op = OptionParser()
op.add_option("--report",
              action="store_true", dest="print_report",
              help="Print a detailed classification report.")
op.add_option("--chi2_select",
              action="store", type="int", dest="select_chi2",
              help="Select some number of features using a chi-squared test")
op.add_option("--confusion_matrix",
              action="store_true", dest="print_cm",
              help="Print the confusion matrix.")
op.add_option("--top10",
              action="store_true", dest="print_top10",
              help="Print ten most discriminative terms per class"
                   " for every classifier.")

(opts, args) = op.parse_args()
if len(args) > 0:
    op.error("this script takes no arguments.")
    sys.exit(1)

print __doc__
op.print_help()
print


###############################################################################
# Load some categories from the training set
categories = [
    'alt.atheism',
    'talk.religion.misc',
    'comp.graphics',
    'sci.space',
]
# Uncomment the following to do the analysis on all the categories
#categories = None

print "Loading 20 newsgroups dataset for categories:"
print categories if categories else "all"

data_train = fetch_20newsgroups(subset='train', categories=categories,
                               shuffle=True, random_state=42)

data_test = fetch_20newsgroups(subset='test', categories=categories,
                              shuffle=True, random_state=42)
print 'data loaded'

categories = data_train.target_names    # for case categories == None

print "%d documents (training set)" % len(data_train.data)
print "%d documents (testing set)" % len(data_test.data)
print "%d categories" % len(categories)
print

# split a training set and a test set
y_train, y_test = data_train.target, data_test.target

print "Extracting features from the training dataset using a sparse vectorizer"
t0 = time()
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
                             stop_words='english')
X_train = vectorizer.fit_transform(data_train.data)
print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X_train.shape
print

print "Extracting features from the test dataset using the same vectorizer"
t0 = time()
X_test = vectorizer.transform(data_test.data)
print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X_test.shape
print

if opts.select_chi2:
    print ("Extracting %d best features by a chi-squared test" %
           opts.select_chi2)
    t0 = time()
    ch2 = SelectKBest(chi2, k=opts.select_chi2)
    X_train = ch2.fit_transform(X_train, y_train)
    X_test = ch2.transform(X_test)
    print "done in %fs" % (time() - t0)
    print


def trim(s):
    """Trim string to fit on terminal (assuming 80-column display)"""
    return s if len(s) <= 80 else s[:77] + "..."


# mapping from integer feature name to original token string
feature_names = vectorizer.get_feature_names()


###############################################################################
# Benchmark classifiers
def benchmark(clf):
    print 80 * '_'
    print "Training: "
    print clf
    t0 = time()
    clf.fit(X_train, y_train)
    train_time = time() - t0
    print "train time: %0.3fs" % train_time

    t0 = time()
    pred = clf.predict(X_test)
    test_time = time() - t0
    print "test time:  %0.3fs" % test_time

    score = metrics.f1_score(y_test, pred)
    print "f1-score:   %0.3f" % score

    if hasattr(clf, 'coef_'):
        print "dimensionality: %d" % clf.coef_.shape[1]
        print "density: %f" % density(clf.coef_)

        if opts.print_top10:
            print "top 10 keywords per class:"
            for i, category in enumerate(categories):
                top10 = np.argsort(clf.coef_[i])[-10:]
                print trim("%s: %s" % (
                    category, " ".join(feature_names[top10])))
        print

    if opts.print_report:
        print "classification report:"
        print metrics.classification_report(y_test, pred,
                                            target_names=categories)

    if opts.print_cm:
        print "confusion matrix:"
        print metrics.confusion_matrix(y_test, pred)

    print
    clf_descr = str(clf).split('(')[0]
    return clf_descr, score, train_time, test_time


results = []
for clf, name in ((RidgeClassifier(tol=1e-1), "Ridge Classifier"),
                  (Perceptron(n_iter=50), "Perceptron"),
                  (KNeighborsClassifier(n_neighbors=10), "kNN")):
    print 80 * '='
    print name
    results.append(benchmark(clf))

for penalty in ["l2", "l1"]:
    print 80 * '='
    print "%s penalty" % penalty.upper()
    # Train Liblinear model
    results.append(benchmark(LinearSVC(loss='l2', penalty=penalty,
                                            dual=False, tol=1e-3)))

    # Train SGD model
    results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
                                          penalty=penalty)))

# Train SGD with Elastic Net penalty
print 80 * '='
print "Elastic-Net penalty"
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
                                      penalty="elasticnet")))

# Train NearestCentroid without threshold
print 80 * '='
print "NearestCentroid (aka Rocchio classifier)"
results.append(benchmark(NearestCentroid()))

# Train sparse Naive Bayes classifiers
print 80 * '='
print "Naive Bayes"
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))


class L1LinearSVC(LinearSVC):

    def fit(self, X, y):
        # The smaller C, the stronger the regularization.
        # The more regularization, the more sparsity.
        self.transformer_ = LinearSVC(penalty="l1",
                                      dual=False, tol=1e-3)
        X = self.transformer_.fit_transform(X, y)
        return LinearSVC.fit(self, X, y)

    def predict(self, X):
        X = self.transformer_.transform(X)
        return LinearSVC.predict(self, X)

print 80 * '='
print "LinearSVC with L1-based feature selection"
results.append(benchmark(L1LinearSVC()))


# make some plots

indices = np.arange(len(results))

results = [[x[i] for x in results] for i in xrange(4)]

clf_names, score, training_time, test_time = results

pl.title("Score")
pl.barh(indices, score, .2, label="score", color='r')
pl.barh(indices + .3, training_time, .2, label="training time", color='g')
pl.barh(indices + .6, test_time, .2, label="test time", color='b')
pl.yticks(())
pl.legend(loc='best')
pl.subplots_adjust(left=.25)

for i, c in  zip(indices, clf_names):
    pl.text(-.3, i, c)

pl.show()