File: plot_swissroll.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (50 lines) | stat: -rw-r--r-- 1,413 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
===================================
Swiss Roll reduction with LLE
===================================

An illustration of Swiss Roll reduction
with locally linear embedding
"""

# Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
# License: BSD, (C) INRIA 2011

print __doc__

import pylab as pl

# This import is needed to modify the way figure behaves
from mpl_toolkits.mplot3d import Axes3D
Axes3D

#----------------------------------------------------------------------
# Locally linear embedding of the swiss roll

from sklearn import manifold, datasets
X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500)

print "Computing LLE embedding"
X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12,
                                             n_components=2)
print "Done. Reconstruction error: %g" % err

#----------------------------------------------------------------------
# Plot result

fig = pl.figure()
try:
    # compatibility matplotlib < 1.0
    ax = fig.add_subplot(211, projection='3d')
    ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=pl.cm.Spectral)
except:
    ax = fig.add_subplot(211)
    ax.scatter(X[:, 0], X[:, 2], c=color, cmap=pl.cm.Spectral)

ax.set_title("Original data")
ax = fig.add_subplot(212)
ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=pl.cm.Spectral)
pl.axis('tight')
pl.xticks([]), pl.yticks([])
pl.title('Projected data')
pl.show()