File: plot_svm_regression.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (46 lines) | stat: -rw-r--r-- 1,430 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
===================================================================
Support Vector Regression (SVR) using linear and non-linear kernels
===================================================================

Toy example of 1D regression using linear, polynominial and RBF
kernels.

"""
print __doc__

###############################################################################
# Generate sample data
import numpy as np

X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()

###############################################################################
# Add noise to targets
y[::5] += 3 * (0.5 - np.random.rand(8))

###############################################################################
# Fit regression model
from sklearn.svm import SVR

svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_lin = SVR(kernel='linear', C=1e3)
svr_poly = SVR(kernel='poly', C=1e3, degree=2)
y_rbf = svr_rbf.fit(X, y).predict(X)
y_lin = svr_lin.fit(X, y).predict(X)
y_poly = svr_poly.fit(X, y).predict(X)

###############################################################################
# look at the results
import pylab as pl
pl.scatter(X, y, c='k', label='data')
pl.hold('on')
pl.plot(X, y_rbf, c='g', label='RBF model')
pl.plot(X, y_lin, c='r', label='Linear model')
pl.plot(X, y_poly, c='b', label='Polynomial model')
pl.xlabel('data')
pl.ylabel('target')
pl.title('Support Vector Regression')
pl.legend()
pl.show()