File: _hmmc.pyx

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (123 lines) | stat: -rw-r--r-- 4,236 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
cimport numpy as np
cimport cython

cdef extern from "math.h":
    double exp(double)
    double log(double)

ctypedef np.float64_t dtype_t


@cython.boundscheck(False)
def _logsum(int N, np.ndarray[dtype_t, ndim=1] X):
    cdef int i
    cdef double maxv, Xsum
    Xsum = 0.0
    maxv = X.max()
    for i in xrange(N):
        Xsum += exp(X[i] - maxv)
    return log(Xsum) + maxv


@cython.boundscheck(False)
def _forward(int n_observations, int n_components, \
        np.ndarray[dtype_t, ndim=1] log_startprob, \
        np.ndarray[dtype_t, ndim=2] log_transmat, \
        np.ndarray[dtype_t, ndim=2] framelogprob, \
        np.ndarray[dtype_t, ndim=2] fwdlattice):

    cdef int t, i, j
    cdef double logprob
    cdef np.ndarray[dtype_t, ndim = 1] work_buffer
    work_buffer = np.zeros(n_components)

    for i in xrange(n_components):
        fwdlattice[0, i] = log_startprob[i] + framelogprob[0, i]

    for t in xrange(1, n_observations):
        for j in xrange(n_components):
            for i in xrange(n_components):
                work_buffer[i] = fwdlattice[t - 1, i] + log_transmat[i, j]
            fwdlattice[t, j] = _logsum(n_components, work_buffer) \
                + framelogprob[t, j]


@cython.boundscheck(False)
def _backward(int n_observations, int n_components, \
        np.ndarray[dtype_t, ndim=1] log_startprob, \
        np.ndarray[dtype_t, ndim=2] log_transmat, \
        np.ndarray[dtype_t, ndim=2] framelogprob, \
        np.ndarray[dtype_t, ndim=2] bwdlattice):

    cdef int t, i, j
    cdef double logprob
    cdef np.ndarray[dtype_t, ndim = 1] work_buffer
    work_buffer = np.zeros(n_components)

    for i in xrange(n_components):
        bwdlattice[n_observations - 1, i] = 0.0

    for t in xrange(n_observations - 2, -1, -1):
        for i in xrange(n_components):
            for j in xrange(n_components):
                work_buffer[j] = log_transmat[i, j] + framelogprob[t + 1, j] \
                    + bwdlattice[t + 1, j]
            bwdlattice[t, i] = _logsum(n_components, work_buffer)


@cython.boundscheck(False)
def _compute_lneta(int n_observations, int n_components, \
        np.ndarray[dtype_t, ndim=2] fwdlattice, \
        np.ndarray[dtype_t, ndim=2] log_transmat, \
        np.ndarray[dtype_t, ndim=2] bwdlattice, \
        np.ndarray[dtype_t, ndim=2] framelogprob, \
        double logprob, \
        np.ndarray[dtype_t, ndim=3] lneta):

    cdef int i, j, t
    for t in xrange(n_observations - 1):
        for i in xrange(n_components):
            for j in xrange(n_components):
                lneta[t, i, j] = fwdlattice[t, i] + log_transmat[i, j] \
                    + framelogprob[t + 1, j] + bwdlattice[t + 1, j] - logprob


@cython.boundscheck(False)
def _viterbi(int n_observations, int n_components, \
        np.ndarray[dtype_t, ndim=1] log_startprob, \
        np.ndarray[dtype_t, ndim=2] log_transmat, \
        np.ndarray[dtype_t, ndim=2] framelogprob):

    cdef int i, j, t, max_pos
    cdef np.ndarray[dtype_t, ndim = 2] viterbi_lattice
    cdef np.ndarray[np.int_t, ndim = 1] state_sequence
    cdef double logprob
    cdef np.ndarray[dtype_t, ndim = 1] work_buffer

    # Initialize state_sequenceation
    state_sequence = np.zeros(n_observations, dtype=np.int)
    work_buffer = np.zeros(n_components)
    viterbi_lattice = np.zeros((n_observations, n_components))

    # viterbi_lattice[0,:] = log_startprob[:] + framelogprob[0,:]
    for i in xrange(n_components):
        viterbi_lattice[0, i] = log_startprob[i] + framelogprob[0, i]

    # Induction
    for t in xrange(1, n_observations):
        for j in xrange(n_components):
            work_buffer[:] = viterbi_lattice[t - 1, :] + log_transmat[:, j]
            viterbi_lattice[t, j] = np.max(work_buffer[:]) + framelogprob[t, j]

    # observation traceback
    max_pos = np.argmax(viterbi_lattice[n_observations - 1, :])
    state_sequence[n_observations - 1] = max_pos
    logprob = viterbi_lattice[n_observations - 1, max_pos]
    
    for t in xrange(n_observations - 2, -1, -1):
        max_pos = np.argmax(viterbi_lattice[t, :] \
                + log_transmat[:, state_sequence[t + 1]])
        state_sequence[t] = max_pos

    return state_sequence, logprob