File: _k_means.pyx

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (272 lines) | stat: -rw-r--r-- 9,714 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# cython: profile=True
# Profiling is enabled by default as the overhead does not seem to be measurable
# on this specific use case.

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#         Olivier Grisel <olivier.grisel@ensta.org>
#
# License: BSD Style.

import numpy as np
from ..utils.extmath import norm
cimport numpy as np
cimport cython

ctypedef np.float64_t DOUBLE
ctypedef np.int32_t INT


cdef extern from "math.h":
    double sqrt(double f)


cdef extern from "cblas.h":
    double ddot "cblas_ddot"(int N, double *X, int incX, double *Y, int incY)


@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cpdef DOUBLE _assign_labels_array(np.ndarray[DOUBLE, ndim=2] X,
                                  np.ndarray[DOUBLE, ndim=1] x_squared_norms,
                                  np.ndarray[DOUBLE, ndim=2] centers,
                                  np.ndarray[INT, ndim=1] labels,
                                  np.ndarray[DOUBLE, ndim=1] distances):
    """Compute label assignement and inertia for a dense array

    Return the inertia (sum of squared distances to the centers).
    """
    cdef:
        unsigned int n_clusters = centers.shape[0]
        unsigned int n_features = centers.shape[1]
        unsigned int n_samples = X.shape[0]
        unsigned int sample_idx, center_idx, feature_idx
        unsigned int store_distances = 0
        unsigned int k
        DOUBLE inertia = 0.0
        DOUBLE min_dist
        DOUBLE dist
        np.ndarray[DOUBLE, ndim=1] center_squared_norms = np.zeros(
            n_clusters, dtype=np.float64)

    if n_samples == distances.shape[0]:
        store_distances = 1

    for center_idx in range(n_clusters):
        center_squared_norms[center_idx] = ddot(
            n_features, &centers[center_idx, 0], 1, &centers[center_idx, 0], 1)

    for sample_idx in range(n_samples):
        min_dist = -1
        for center_idx in range(n_clusters):
            dist = 0.0
            # hardcoded: minimize euclidean distance to cluster center:
            # ||a - b||^2 = ||a||^2 + ||b||^2 -2 <a, b>
            dist += ddot(n_features, &X[sample_idx, 0], 1,
                         &centers[center_idx, 0], 1)
            dist *= -2
            dist += center_squared_norms[center_idx]
            dist += x_squared_norms[sample_idx]
            if min_dist == -1 or dist < min_dist:
                min_dist = dist
                labels[sample_idx] = center_idx

        if store_distances:
            distances[sample_idx] = min_dist
        inertia += min_dist

    return inertia


@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cpdef DOUBLE _assign_labels_csr(X, np.ndarray[DOUBLE, ndim=1] x_squared_norms,
                                np.ndarray[DOUBLE, ndim=2] centers,
                                np.ndarray[INT, ndim=1] labels,
                                np.ndarray[DOUBLE, ndim=1] distances):
    """Compute label assignement and inertia for a CSR input

    Return the inertia (sum of squared distances to the centers).
    """
    cdef:
        np.ndarray[DOUBLE, ndim=1] X_data = X.data
        np.ndarray[INT, ndim=1] X_indices = X.indices
        np.ndarray[INT, ndim=1] X_indptr = X.indptr
        unsigned int n_clusters = centers.shape[0]
        unsigned int n_features = centers.shape[1]
        unsigned int n_samples = X.shape[0]
        unsigned int store_distances = 0
        unsigned int sample_idx, center_idx, feature_idx
        unsigned int k
        DOUBLE inertia = 0.0
        DOUBLE min_dist
        DOUBLE dist
        np.ndarray[DOUBLE, ndim=1] center_squared_norms = np.zeros(
            n_clusters, dtype=np.float64)

    if n_samples == distances.shape[0]:
        store_distances = 1

    for center_idx in range(n_clusters):
        center_squared_norms[center_idx] = ddot(
            n_features, &centers[center_idx, 0], 1, &centers[center_idx, 0], 1)

    for sample_idx in range(n_samples):
        min_dist = -1
        for center_idx in range(n_clusters):
            dist = 0.0
            # hardcoded: minimize euclidean distance to cluster center:
            # ||a - b||^2 = ||a||^2 + ||b||^2 -2 <a, b>
            for k in range(X_indptr[sample_idx], X_indptr[sample_idx + 1]):
                dist += centers[center_idx, X_indices[k]] * X_data[k]
            dist *= -2
            dist += center_squared_norms[center_idx]
            dist += x_squared_norms[sample_idx]
            if min_dist == -1 or dist < min_dist:
                min_dist = dist
                labels[sample_idx] = center_idx
                if store_distances:
                    distances[sample_idx] = dist
        inertia += min_dist

    return inertia


@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def _mini_batch_update_csr(X, np.ndarray[DOUBLE, ndim=1] x_squared_norms,
                           np.ndarray[DOUBLE, ndim=2] centers,
                           np.ndarray[INT, ndim=1] counts,
                           np.ndarray[INT, ndim=1] nearest_center,
                           np.ndarray[DOUBLE, ndim=1] old_center,
                           int compute_squared_diff):
    """Incremental update of the centers for sparse MiniBatchKMeans.

    Parameters
    ----------

    X: CSR matrix, dtype float64
        The complete (pre allocated) training set as a CSR matrix.

    centers: array, shape (n_clusters, n_features)
        The cluster centers

    counts: array, shape (n_clusters,)
         The vector in which we keep track of the numbers of elements in a
         cluster

    Returns
    -------
    inertia: float
        The inertia of the batch prior to centers update, i.e. the sum
        distances to the closest center for each sample. This is the objective
        function being minimized by the k-means algorithm.

    squared_diff: float
        The sum of squared update (squared norm of the centers position
        change). If compute_squared_diff is 0, this computation is skipped and
        0.0 is returned instead.

    Both squared diff and inertia are commonly used to monitor the convergence
    of the algorithm.
    """
    cdef:
        np.ndarray[DOUBLE, ndim=1] X_data = X.data
        np.ndarray[int, ndim=1] X_indices = X.indices
        np.ndarray[int, ndim=1] X_indptr = X.indptr
        unsigned int n_samples = X.shape[0]
        unsigned int n_clusters = centers.shape[0]
        unsigned int n_features = centers.shape[1]

        unsigned int sample_idx, center_idx, feature_idx
        unsigned int k
        int old_count, new_count
        DOUBLE center_diff
        DOUBLE squared_diff = 0.0

    # move centers to the mean of both old and newly assigned samples
    for center_idx in range(n_clusters):
        old_count = counts[center_idx]
        new_count = old_count

        # count the number of samples assigned to this center
        for sample_idx in range(n_samples):
            if nearest_center[sample_idx] == center_idx:
                new_count += 1

        if new_count == old_count:
            # no new sample: leave this center as it stands
            continue

        # rescale the old center to reflect it previous accumulated
        # weight w.r.t. the new data that will be incrementally contributed
        if compute_squared_diff:
            old_center[:] = centers[center_idx]
        centers[center_idx] *= old_count

        # iterate of over samples assigned to this cluster to move the center
        # location by inplace summation
        for sample_idx in range(n_samples):
            if nearest_center[sample_idx] != center_idx:
                continue

            # inplace sum with new samples that are members of this cluster
            # and update of the incremental squared difference update of the
            # center position
            for k in range(X_indptr[sample_idx], X_indptr[sample_idx + 1]):
                centers[center_idx, X_indices[k]] += X_data[k]

        # inplace rescale center with updated count
        if new_count > old_count:
            # update the count statistics for this center
            counts[center_idx] = new_count

            # re-scale the updated center with the total new counts
            centers[center_idx] /= new_count

            # update the incremental computation of the squared total
            # centers position change
            if compute_squared_diff:
                for feature_idx in range(n_features):
                    squared_diff += (old_center[feature_idx]
                                     - centers[center_idx, feature_idx]) ** 2

    return squared_diff


@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def csr_row_norm_l2(X, squared=True):
    """Get L2 norm of each row in CSR matrix X.

    TODO: refactor me in the sklearn.utils.sparsefuncs module once the CSR
    sklearn.preprocessing.Scaler has been refactored as well.
    """
    cdef:
        unsigned int n_samples = X.shape[0]
        unsigned int n_features = X.shape[1]
        np.ndarray[DOUBLE, ndim=1] norms = np.zeros((n_samples,),
                                                    dtype=np.float64)
        np.ndarray[DOUBLE, ndim=1] X_data = X.data
        np.ndarray[int, ndim=1] X_indices = X.indices
        np.ndarray[int, ndim=1] X_indptr = X.indptr

        unsigned int i
        unsigned int j
        double sum_
        int with_sqrt = not squared

    for i in range(n_samples):
        sum_ = 0.0

        for j in range(X_indptr[i], X_indptr[i + 1]):
            sum_ += X_data[j] * X_data[j]

        if with_sqrt:
            sum_ = sqrt(sum_)

        norms[i] = sum_
    return norms