1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
"""Testing for K-means"""
import numpy as np
import warnings
from scipy import sparse as sp
from numpy.testing import assert_equal
from numpy.testing import assert_array_equal
from numpy.testing import assert_array_almost_equal
from nose import SkipTest
from nose.tools import assert_almost_equal
from nose.tools import assert_raises
from nose.tools import assert_true
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_less
from sklearn.metrics.cluster import v_measure_score
from sklearn.cluster import KMeans
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster.k_means_ import _labels_inertia
from sklearn.cluster.k_means_ import _mini_batch_step
from sklearn.cluster._k_means import csr_row_norm_l2
from sklearn.datasets.samples_generator import make_blobs
# non centered, sparse centers to check the
centers = np.array([
[0.0, 5.0, 0.0, 0.0, 0.0],
[1.0, 1.0, 4.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 5.0, 1.0],
])
n_samples = 100
n_clusters, n_features = centers.shape
X, true_labels = make_blobs(n_samples=n_samples, centers=centers,
cluster_std=1., random_state=42)
X_csr = sp.csr_matrix(X)
def test_square_norms():
x_squared_norms = (X ** 2).sum(axis=1)
x_squared_norms_from_csr = csr_row_norm_l2(X_csr)
assert_array_almost_equal(x_squared_norms,
x_squared_norms_from_csr, 5)
def test_kmeans_dtype():
rnd = np.random.RandomState(0)
X = rnd.normal(size=(40, 2))
X = (X * 10).astype(np.uint8)
km = KMeans(n_init=1).fit(X)
with warnings.catch_warnings(record=True) as w:
assert_array_equal(km.labels_, km.predict(X))
assert_equal(len(w), 1)
def test_labels_assignement_and_inertia():
# pure numpy implementation as easily auditable reference gold
# implementation
rng = np.random.RandomState(42)
noisy_centers = centers + rng.normal(size=centers.shape)
labels_gold = - np.ones(n_samples, dtype=np.int)
mindist = np.empty(n_samples)
mindist.fill(np.infty)
for center_id in range(n_clusters):
dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1)
labels_gold[dist < mindist] = center_id
mindist = np.minimum(dist, mindist)
inertia_gold = mindist.sum()
assert_true((mindist >= 0.0).all())
assert_true((labels_gold != -1).all())
# perform label assignement using the dense array input
x_squared_norms = (X ** 2).sum(axis=1)
labels_array, inertia_array = _labels_inertia(
X, x_squared_norms, noisy_centers)
assert_array_almost_equal(inertia_array, inertia_gold)
assert_array_equal(labels_array, labels_gold)
# perform label assignement using the sparse CSR input
x_squared_norms_from_csr = csr_row_norm_l2(X_csr)
labels_csr, inertia_csr = _labels_inertia(
X_csr, x_squared_norms_from_csr, noisy_centers)
assert_array_almost_equal(inertia_csr, inertia_gold)
assert_array_equal(labels_csr, labels_gold)
def test_minibatch_update_consistency():
"""Check that dense and sparse minibatch update give the same results"""
rng = np.random.RandomState(42)
old_centers = centers + rng.normal(size=centers.shape)
new_centers = old_centers.copy()
new_centers_csr = old_centers.copy()
counts = np.zeros(new_centers.shape[0], dtype=np.int32)
counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32)
x_squared_norms = (X ** 2).sum(axis=1)
x_squared_norms_csr = csr_row_norm_l2(X_csr, squared=True)
buffer = np.zeros(centers.shape[1], dtype=np.double)
buffer_csr = np.zeros(centers.shape[1], dtype=np.double)
# extract a small minibatch
X_mb = X[:10]
X_mb_csr = X_csr[:10]
x_mb_squared_norms = x_squared_norms[:10]
x_mb_squared_norms_csr = x_squared_norms_csr[:10]
# step 1: compute the dense minibatch update
old_inertia, incremental_diff = _mini_batch_step(
X_mb, x_mb_squared_norms, new_centers, counts,
buffer, 1)
assert_greater(old_inertia, 0.0)
# compute the new inertia on the same batch to check that it decreased
labels, new_inertia = _labels_inertia(
X_mb, x_mb_squared_norms, new_centers)
assert_greater(new_inertia, 0.0)
assert_less(new_inertia, old_inertia)
# check that the incremental difference computation is matching the
# final observed value
effective_diff = np.sum((new_centers - old_centers) ** 2)
assert_almost_equal(incremental_diff, effective_diff)
# step 2: compute the sparse minibatch update
old_inertia_csr, incremental_diff_csr = _mini_batch_step(
X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr,
buffer_csr, 1)
assert_greater(old_inertia_csr, 0.0)
# compute the new inertia on the same batch to check that it decreased
labels_csr, new_inertia_csr = _labels_inertia(
X_mb_csr, x_mb_squared_norms_csr, new_centers_csr)
assert_greater(new_inertia_csr, 0.0)
assert_less(new_inertia_csr, old_inertia_csr)
# check that the incremental difference computation is matching the
# final observed value
effective_diff = np.sum((new_centers_csr - old_centers) ** 2)
assert_almost_equal(incremental_diff_csr, effective_diff)
# step 3: check that sparse and dense updates lead to the same results
assert_array_equal(labels, labels_csr)
assert_array_almost_equal(new_centers, new_centers_csr)
assert_almost_equal(incremental_diff, incremental_diff_csr)
assert_almost_equal(old_inertia, old_inertia_csr)
assert_almost_equal(new_inertia, new_inertia_csr)
def _check_fitted_model(km):
# check that the number of clusters centers and distinct labels match
# the expectation
centers = km.cluster_centers_
assert_equal(centers.shape, (n_clusters, n_features))
labels = km.labels_
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignements are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(km.inertia_, 0.0)
# check error on dataset being too small
assert_raises(ValueError, km.fit, [[0., 1.]])
def test_k_means_plus_plus_init():
k_means = KMeans(init="k-means++", k=n_clusters, random_state=42).fit(X)
_check_fitted_model(k_means)
def _get_mac_os_version():
import platform
mac_version, _, _ = platform.mac_ver()
if mac_version:
# turn something like '10.7.3' into '10.7'
return '.'.join(mac_version.split('.')[:2])
def test_k_means_plus_plus_init_2_jobs():
if _get_mac_os_version() == '10.7':
raise SkipTest('Multi-process bug in Mac OS X Lion (see issue #636)')
k_means = KMeans(init="k-means++", k=n_clusters, n_jobs=2,
random_state=42).fit(X)
_check_fitted_model(k_means)
def test_k_means_plus_plus_init_sparse():
k_means = KMeans(init="k-means++", k=n_clusters, random_state=42)
k_means.fit(X_csr)
_check_fitted_model(k_means)
def test_k_means_random_init():
k_means = KMeans(init="random", k=n_clusters, random_state=42).fit(X)
_check_fitted_model(k_means)
def test_k_means_random_init_sparse():
k_means = KMeans(init="random", k=n_clusters, random_state=42).fit(X_csr)
_check_fitted_model(k_means)
def test_k_means_plus_plus_init_not_precomputed():
k_means = KMeans(init="k-means++", k=n_clusters, random_state=42,
precompute_distances=False).fit(X)
_check_fitted_model(k_means)
def test_k_means_random_init_not_precomputed():
k_means = KMeans(init="random", k=n_clusters, random_state=42,
precompute_distances=False).fit(X)
_check_fitted_model(k_means)
def test_k_means_perfect_init():
k_means = KMeans(init=centers.copy(), k=n_clusters, random_state=42,
n_init=1)
k_means.fit(X)
_check_fitted_model(k_means)
def test_mb_k_means_plus_plus_init_dense_array():
mb_k_means = MiniBatchKMeans(init="k-means++", k=n_clusters,
random_state=42)
mb_k_means.fit(X)
_check_fitted_model(mb_k_means)
def test_mb_k_means_plus_plus_init_sparse_matrix():
mb_k_means = MiniBatchKMeans(init="k-means++", k=n_clusters,
random_state=42)
mb_k_means.fit(X_csr)
_check_fitted_model(mb_k_means)
def test_minibatch_init_with_large_k():
mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, k=20)
# Check that a warning is raised, as the number clusters is larger
# than the init_size
with warnings.catch_warnings(record=True) as warn_queue:
mb_k_means.fit(X)
assert_equal(len(warn_queue), 1)
def test_minibatch_k_means_random_init_dense_array():
# increase n_init to make random init stable enough
mb_k_means = MiniBatchKMeans(init="random", k=n_clusters,
random_state=42, n_init=10).fit(X)
_check_fitted_model(mb_k_means)
def test_minibatch_k_means_random_init_sparse_csr():
# increase n_init to make random init stable enough
mb_k_means = MiniBatchKMeans(init="random", k=n_clusters,
random_state=42, n_init=10).fit(X_csr)
_check_fitted_model(mb_k_means)
def test_minibatch_k_means_perfect_init_dense_array():
mb_k_means = MiniBatchKMeans(init=centers.copy(), k=n_clusters,
random_state=42).fit(X)
_check_fitted_model(mb_k_means)
def test_minibatch_k_means_perfect_init_sparse_csr():
mb_k_means = MiniBatchKMeans(init=centers.copy(), k=n_clusters,
random_state=42).fit(X_csr)
_check_fitted_model(mb_k_means)
def test_sparse_mb_k_means_callable_init():
def test_init(X, k, random_state):
return centers
mb_k_means = MiniBatchKMeans(init=test_init, random_state=42).fit(X_csr)
_check_fitted_model(mb_k_means)
def test_mini_batch_k_means_random_init_partial_fit():
km = MiniBatchKMeans(k=n_clusters, init="random", random_state=42)
# use the partial_fit API for online learning
for X_minibatch in np.array_split(X, 10):
km.partial_fit(X_minibatch)
# compute the labeling on the complete dataset
labels = km.predict(X)
assert_equal(v_measure_score(true_labels, labels), 1.0)
def test_minibatch_default_init_size():
mb_k_means = MiniBatchKMeans(init=centers.copy(), k=n_clusters,
batch_size=10, random_state=42).fit(X)
assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size)
_check_fitted_model(mb_k_means)
def test_minibatch_set_init_size():
mb_k_means = MiniBatchKMeans(init=centers.copy(), k=n_clusters,
init_size=666, random_state=42).fit(X)
assert_equal(mb_k_means.init_size, 666)
assert_equal(mb_k_means.init_size_, n_samples)
_check_fitted_model(mb_k_means)
def test_k_means_invalid_init():
k_means = KMeans(init="invalid", n_init=1, k=n_clusters)
assert_raises(ValueError, k_means.fit, X)
def test_mini_match_k_means_invalid_init():
k_means = MiniBatchKMeans(init="invalid", n_init=1, k=n_clusters)
assert_raises(ValueError, k_means.fit, X)
def test_k_means_copyx():
"""Check if copy_x=False returns nearly equal X after de-centering."""
my_X = X.copy()
k_means = KMeans(copy_x=False, k=n_clusters, random_state=42).fit(my_X)
_check_fitted_model(k_means)
# check if my_X is centered
assert_array_almost_equal(my_X, X)
def test_k_means_non_collapsed():
"""Check k_means with a bad initialization does not yield a singleton
Starting with bad centers that are quickly ignored should not
result in a repositioning of the centers to the center of mass that
would lead to collapsed centers which in turns make the clustering
dependent of the numerical unstabilities.
"""
my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]])
array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]])
k_means = KMeans(init=array_init, k=3, random_state=42, n_init=1)
k_means.fit(my_X)
# centers must not been collapsed
assert_equal(len(np.unique(k_means.labels_)), 3)
centers = k_means.cluster_centers_
assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1)
assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1)
assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1)
def test_predict():
k_means = KMeans(k=n_clusters, random_state=42)
k_means.fit(X)
# sanity check: predict centroid labels
pred = k_means.predict(k_means.cluster_centers_)
assert_array_equal(pred, np.arange(n_clusters))
# sanity check: re-predict labeling for training set samples
pred = k_means.predict(X)
assert_array_equal(pred, k_means.labels_)
# re-predict labels for training set using fit_predict
pred = k_means.fit_predict(X)
assert_array_equal(pred, k_means.labels_)
def test_score():
s1 = KMeans(k=n_clusters, max_iter=1, random_state=42).fit(X).score(X)
s2 = KMeans(k=n_clusters, max_iter=10, random_state=42).fit(X).score(X)
assert_greater(s2, s1)
def test_predict_minibatch_dense_input():
mb_k_means = MiniBatchKMeans(k=n_clusters, random_state=40).fit(X)
# sanity check: predict centroid labels
pred = mb_k_means.predict(mb_k_means.cluster_centers_)
assert_array_equal(pred, np.arange(n_clusters))
# sanity check: re-predict labeling for training set samples
pred = mb_k_means.predict(X)
assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_)
def test_predict_minibatch_kmeanspp_init_sparse_input():
mb_k_means = MiniBatchKMeans(k=n_clusters, init='k-means++',
n_init=10).fit(X_csr)
# sanity check: re-predict labeling for training set samples
assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_)
# sanity check: predict centroid labels
pred = mb_k_means.predict(mb_k_means.cluster_centers_)
assert_array_equal(pred, np.arange(n_clusters))
# check that models trained on sparse input also works for dense input at
# predict time
assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_)
def test_predict_minibatch_random_init_sparse_input():
mb_k_means = MiniBatchKMeans(k=n_clusters, init='random',
n_init=10).fit(X_csr)
# sanity check: re-predict labeling for training set samples
assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_)
# sanity check: predict centroid labels
pred = mb_k_means.predict(mb_k_means.cluster_centers_)
assert_array_equal(pred, np.arange(n_clusters))
# check that models trained on sparse input also works for dense input at
# predict time
assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_)
def test_input_dtypes():
X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]]
X_int = np.array(X_list, dtype=np.int32)
X_int_csr = sp.csr_matrix(X_int)
init_int = X_int[:2]
fitted_models = [
KMeans(k=2).fit(X_list),
KMeans(k=2).fit(X_int),
KMeans(k=2, init=init_int, n_init=1).fit(X_list),
KMeans(k=2, init=init_int, n_init=1).fit(X_int),
# mini batch kmeans is very unstable on such a small dataset hence
# we use many inits
MiniBatchKMeans(k=2, n_init=10, batch_size=2).fit(X_list),
MiniBatchKMeans(k=2, n_init=10, batch_size=2).fit(X_int),
MiniBatchKMeans(k=2, n_init=10, batch_size=2).fit(X_int_csr),
MiniBatchKMeans(k=2, batch_size=2, init=init_int).fit(X_list),
MiniBatchKMeans(k=2, batch_size=2, init=init_int).fit(X_int),
MiniBatchKMeans(k=2, batch_size=2, init=init_int).fit(X_int_csr),
]
expected_labels = [0, 1, 1, 0, 0, 1]
scores = np.array([v_measure_score(expected_labels, km.labels_)
for km in fitted_models])
assert_array_equal(scores, np.ones(scores.shape[0]))
def test_transform():
k_means = KMeans(k=n_clusters)
k_means.fit(X)
X_new = k_means.transform(k_means.cluster_centers_)
for c in range(n_clusters):
assert_equal(X_new[c, c], 0)
for c2 in range(n_clusters):
if c != c2:
assert_greater(X_new[c, c2], 0)
def test_n_init():
"""Check that increasing the number of init increases the quality"""
n_runs = 5
n_init_range = [1, 5, 10]
inertia = np.zeros((len(n_init_range), n_runs))
for i, n_init in enumerate(n_init_range):
for j in range(n_runs):
km = KMeans(k=n_clusters, init="random", n_init=n_init,
random_state=j).fit(X)
inertia[i, j] = km.inertia_
inertia = inertia.mean(axis=1)
failure_msg = ("Inertia %r should be decreasing"
" when n_init is increasing.") % list(inertia)
for i in range(len(n_init_range) - 1):
assert_true(inertia[i] >= inertia[i + 1], failure_msg)
|