File: test_k_means.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (473 lines) | stat: -rw-r--r-- 17,024 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
"""Testing for K-means"""

import numpy as np
import warnings
from scipy import sparse as sp
from numpy.testing import assert_equal
from numpy.testing import assert_array_equal
from numpy.testing import assert_array_almost_equal
from nose import SkipTest
from nose.tools import assert_almost_equal
from nose.tools import assert_raises
from nose.tools import assert_true

from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_less
from sklearn.metrics.cluster import v_measure_score
from sklearn.cluster import KMeans
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster.k_means_ import _labels_inertia
from sklearn.cluster.k_means_ import _mini_batch_step
from sklearn.cluster._k_means import csr_row_norm_l2
from sklearn.datasets.samples_generator import make_blobs


# non centered, sparse centers to check the
centers = np.array([
    [0.0, 5.0, 0.0, 0.0, 0.0],
    [1.0, 1.0, 4.0, 0.0, 0.0],
    [1.0, 0.0, 0.0, 5.0, 1.0],
])
n_samples = 100
n_clusters, n_features = centers.shape
X, true_labels = make_blobs(n_samples=n_samples, centers=centers,
                            cluster_std=1., random_state=42)
X_csr = sp.csr_matrix(X)


def test_square_norms():
    x_squared_norms = (X ** 2).sum(axis=1)
    x_squared_norms_from_csr = csr_row_norm_l2(X_csr)
    assert_array_almost_equal(x_squared_norms,
                              x_squared_norms_from_csr, 5)


def test_kmeans_dtype():
    rnd = np.random.RandomState(0)
    X = rnd.normal(size=(40, 2))
    X = (X * 10).astype(np.uint8)
    km = KMeans(n_init=1).fit(X)
    with warnings.catch_warnings(record=True) as w:
        assert_array_equal(km.labels_, km.predict(X))
        assert_equal(len(w), 1)


def test_labels_assignement_and_inertia():
    # pure numpy implementation as easily auditable reference gold
    # implementation
    rng = np.random.RandomState(42)
    noisy_centers = centers + rng.normal(size=centers.shape)
    labels_gold = - np.ones(n_samples, dtype=np.int)
    mindist = np.empty(n_samples)
    mindist.fill(np.infty)
    for center_id in range(n_clusters):
        dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1)
        labels_gold[dist < mindist] = center_id
        mindist = np.minimum(dist, mindist)
    inertia_gold = mindist.sum()
    assert_true((mindist >= 0.0).all())
    assert_true((labels_gold != -1).all())

    # perform label assignement using the dense array input
    x_squared_norms = (X ** 2).sum(axis=1)
    labels_array, inertia_array = _labels_inertia(
        X, x_squared_norms, noisy_centers)
    assert_array_almost_equal(inertia_array, inertia_gold)
    assert_array_equal(labels_array, labels_gold)

    # perform label assignement using the sparse CSR input
    x_squared_norms_from_csr = csr_row_norm_l2(X_csr)
    labels_csr, inertia_csr = _labels_inertia(
        X_csr, x_squared_norms_from_csr, noisy_centers)
    assert_array_almost_equal(inertia_csr, inertia_gold)
    assert_array_equal(labels_csr, labels_gold)


def test_minibatch_update_consistency():
    """Check that dense and sparse minibatch update give the same results"""
    rng = np.random.RandomState(42)
    old_centers = centers + rng.normal(size=centers.shape)

    new_centers = old_centers.copy()
    new_centers_csr = old_centers.copy()

    counts = np.zeros(new_centers.shape[0], dtype=np.int32)
    counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32)

    x_squared_norms = (X ** 2).sum(axis=1)
    x_squared_norms_csr = csr_row_norm_l2(X_csr, squared=True)

    buffer = np.zeros(centers.shape[1], dtype=np.double)
    buffer_csr = np.zeros(centers.shape[1], dtype=np.double)

    # extract a small minibatch
    X_mb = X[:10]
    X_mb_csr = X_csr[:10]
    x_mb_squared_norms = x_squared_norms[:10]
    x_mb_squared_norms_csr = x_squared_norms_csr[:10]

    # step 1: compute the dense minibatch update
    old_inertia, incremental_diff = _mini_batch_step(
        X_mb, x_mb_squared_norms, new_centers, counts,
        buffer, 1)
    assert_greater(old_inertia, 0.0)

    # compute the new inertia on the same batch to check that it decreased
    labels, new_inertia = _labels_inertia(
        X_mb, x_mb_squared_norms, new_centers)
    assert_greater(new_inertia, 0.0)
    assert_less(new_inertia, old_inertia)

    # check that the incremental difference computation is matching the
    # final observed value
    effective_diff = np.sum((new_centers - old_centers) ** 2)
    assert_almost_equal(incremental_diff, effective_diff)

    # step 2: compute the sparse minibatch update
    old_inertia_csr, incremental_diff_csr = _mini_batch_step(
        X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr,
        buffer_csr, 1)
    assert_greater(old_inertia_csr, 0.0)

    # compute the new inertia on the same batch to check that it decreased
    labels_csr, new_inertia_csr = _labels_inertia(
        X_mb_csr, x_mb_squared_norms_csr, new_centers_csr)
    assert_greater(new_inertia_csr, 0.0)
    assert_less(new_inertia_csr, old_inertia_csr)

    # check that the incremental difference computation is matching the
    # final observed value
    effective_diff = np.sum((new_centers_csr - old_centers) ** 2)
    assert_almost_equal(incremental_diff_csr, effective_diff)

    # step 3: check that sparse and dense updates lead to the same results
    assert_array_equal(labels, labels_csr)
    assert_array_almost_equal(new_centers, new_centers_csr)
    assert_almost_equal(incremental_diff, incremental_diff_csr)
    assert_almost_equal(old_inertia, old_inertia_csr)
    assert_almost_equal(new_inertia, new_inertia_csr)


def _check_fitted_model(km):
    # check that the number of clusters centers and distinct labels match
    # the expectation
    centers = km.cluster_centers_
    assert_equal(centers.shape, (n_clusters, n_features))

    labels = km.labels_
    assert_equal(np.unique(labels).shape[0], n_clusters)

    # check that the labels assignements are perfect (up to a permutation)
    assert_equal(v_measure_score(true_labels, labels), 1.0)
    assert_greater(km.inertia_, 0.0)

    # check error on dataset being too small
    assert_raises(ValueError, km.fit, [[0., 1.]])


def test_k_means_plus_plus_init():
    k_means = KMeans(init="k-means++", k=n_clusters, random_state=42).fit(X)
    _check_fitted_model(k_means)


def _get_mac_os_version():
    import platform
    mac_version, _, _ = platform.mac_ver()
    if mac_version:
        # turn something like '10.7.3' into '10.7'
        return '.'.join(mac_version.split('.')[:2])


def test_k_means_plus_plus_init_2_jobs():
    if _get_mac_os_version() == '10.7':
        raise SkipTest('Multi-process bug in Mac OS X Lion (see issue #636)')
    k_means = KMeans(init="k-means++", k=n_clusters, n_jobs=2,
                     random_state=42).fit(X)
    _check_fitted_model(k_means)


def test_k_means_plus_plus_init_sparse():
    k_means = KMeans(init="k-means++", k=n_clusters, random_state=42)
    k_means.fit(X_csr)
    _check_fitted_model(k_means)


def test_k_means_random_init():
    k_means = KMeans(init="random", k=n_clusters, random_state=42).fit(X)
    _check_fitted_model(k_means)


def test_k_means_random_init_sparse():
    k_means = KMeans(init="random", k=n_clusters, random_state=42).fit(X_csr)
    _check_fitted_model(k_means)


def test_k_means_plus_plus_init_not_precomputed():
    k_means = KMeans(init="k-means++", k=n_clusters, random_state=42,
                     precompute_distances=False).fit(X)
    _check_fitted_model(k_means)


def test_k_means_random_init_not_precomputed():
    k_means = KMeans(init="random", k=n_clusters, random_state=42,
                     precompute_distances=False).fit(X)
    _check_fitted_model(k_means)


def test_k_means_perfect_init():
    k_means = KMeans(init=centers.copy(), k=n_clusters, random_state=42,
                     n_init=1)
    k_means.fit(X)
    _check_fitted_model(k_means)


def test_mb_k_means_plus_plus_init_dense_array():
    mb_k_means = MiniBatchKMeans(init="k-means++", k=n_clusters,
                                 random_state=42)
    mb_k_means.fit(X)
    _check_fitted_model(mb_k_means)


def test_mb_k_means_plus_plus_init_sparse_matrix():
    mb_k_means = MiniBatchKMeans(init="k-means++", k=n_clusters,
                                 random_state=42)
    mb_k_means.fit(X_csr)
    _check_fitted_model(mb_k_means)


def test_minibatch_init_with_large_k():
    mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, k=20)
    # Check that a warning is raised, as the number clusters is larger
    # than the init_size
    with warnings.catch_warnings(record=True) as warn_queue:
        mb_k_means.fit(X)

    assert_equal(len(warn_queue), 1)


def test_minibatch_k_means_random_init_dense_array():
    # increase n_init to make random init stable enough
    mb_k_means = MiniBatchKMeans(init="random", k=n_clusters,
                                 random_state=42, n_init=10).fit(X)
    _check_fitted_model(mb_k_means)


def test_minibatch_k_means_random_init_sparse_csr():
    # increase n_init to make random init stable enough
    mb_k_means = MiniBatchKMeans(init="random", k=n_clusters,
                                 random_state=42, n_init=10).fit(X_csr)
    _check_fitted_model(mb_k_means)


def test_minibatch_k_means_perfect_init_dense_array():
    mb_k_means = MiniBatchKMeans(init=centers.copy(), k=n_clusters,
                                 random_state=42).fit(X)
    _check_fitted_model(mb_k_means)


def test_minibatch_k_means_perfect_init_sparse_csr():
    mb_k_means = MiniBatchKMeans(init=centers.copy(), k=n_clusters,
                                 random_state=42).fit(X_csr)
    _check_fitted_model(mb_k_means)


def test_sparse_mb_k_means_callable_init():

    def test_init(X, k, random_state):
        return centers

    mb_k_means = MiniBatchKMeans(init=test_init, random_state=42).fit(X_csr)
    _check_fitted_model(mb_k_means)


def test_mini_batch_k_means_random_init_partial_fit():
    km = MiniBatchKMeans(k=n_clusters, init="random", random_state=42)

    # use the partial_fit API for online learning
    for X_minibatch in np.array_split(X, 10):
        km.partial_fit(X_minibatch)

    # compute the labeling on the complete dataset
    labels = km.predict(X)
    assert_equal(v_measure_score(true_labels, labels), 1.0)


def test_minibatch_default_init_size():
    mb_k_means = MiniBatchKMeans(init=centers.copy(), k=n_clusters,
                                 batch_size=10, random_state=42).fit(X)
    assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size)
    _check_fitted_model(mb_k_means)


def test_minibatch_set_init_size():
    mb_k_means = MiniBatchKMeans(init=centers.copy(), k=n_clusters,
                                 init_size=666, random_state=42).fit(X)
    assert_equal(mb_k_means.init_size, 666)
    assert_equal(mb_k_means.init_size_, n_samples)
    _check_fitted_model(mb_k_means)


def test_k_means_invalid_init():
    k_means = KMeans(init="invalid", n_init=1, k=n_clusters)
    assert_raises(ValueError, k_means.fit, X)


def test_mini_match_k_means_invalid_init():
    k_means = MiniBatchKMeans(init="invalid", n_init=1, k=n_clusters)
    assert_raises(ValueError, k_means.fit, X)


def test_k_means_copyx():
    """Check if copy_x=False returns nearly equal X after de-centering."""
    my_X = X.copy()
    k_means = KMeans(copy_x=False, k=n_clusters, random_state=42).fit(my_X)
    _check_fitted_model(k_means)

    # check if my_X is centered
    assert_array_almost_equal(my_X, X)


def test_k_means_non_collapsed():
    """Check k_means with a bad initialization does not yield a singleton

    Starting with bad centers that are quickly ignored should not
    result in a repositioning of the centers to the center of mass that
    would lead to collapsed centers which in turns make the clustering
    dependent of the numerical unstabilities.
    """
    my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]])
    array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]])
    k_means = KMeans(init=array_init, k=3, random_state=42, n_init=1)
    k_means.fit(my_X)

    # centers must not been collapsed
    assert_equal(len(np.unique(k_means.labels_)), 3)

    centers = k_means.cluster_centers_
    assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1)
    assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1)
    assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1)


def test_predict():
    k_means = KMeans(k=n_clusters, random_state=42)

    k_means.fit(X)

    # sanity check: predict centroid labels
    pred = k_means.predict(k_means.cluster_centers_)
    assert_array_equal(pred, np.arange(n_clusters))

    # sanity check: re-predict labeling for training set samples
    pred = k_means.predict(X)
    assert_array_equal(pred, k_means.labels_)

    # re-predict labels for training set using fit_predict
    pred = k_means.fit_predict(X)
    assert_array_equal(pred, k_means.labels_)


def test_score():
    s1 = KMeans(k=n_clusters, max_iter=1, random_state=42).fit(X).score(X)
    s2 = KMeans(k=n_clusters, max_iter=10, random_state=42).fit(X).score(X)
    assert_greater(s2, s1)


def test_predict_minibatch_dense_input():
    mb_k_means = MiniBatchKMeans(k=n_clusters, random_state=40).fit(X)

    # sanity check: predict centroid labels
    pred = mb_k_means.predict(mb_k_means.cluster_centers_)
    assert_array_equal(pred, np.arange(n_clusters))

    # sanity check: re-predict labeling for training set samples
    pred = mb_k_means.predict(X)
    assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_)


def test_predict_minibatch_kmeanspp_init_sparse_input():
    mb_k_means = MiniBatchKMeans(k=n_clusters, init='k-means++',
                                 n_init=10).fit(X_csr)

    # sanity check: re-predict labeling for training set samples
    assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_)

    # sanity check: predict centroid labels
    pred = mb_k_means.predict(mb_k_means.cluster_centers_)
    assert_array_equal(pred, np.arange(n_clusters))

    # check that models trained on sparse input also works for dense input at
    # predict time
    assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_)


def test_predict_minibatch_random_init_sparse_input():
    mb_k_means = MiniBatchKMeans(k=n_clusters, init='random',
                                 n_init=10).fit(X_csr)

    # sanity check: re-predict labeling for training set samples
    assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_)

    # sanity check: predict centroid labels
    pred = mb_k_means.predict(mb_k_means.cluster_centers_)
    assert_array_equal(pred, np.arange(n_clusters))

    # check that models trained on sparse input also works for dense input at
    # predict time
    assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_)


def test_input_dtypes():
    X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]]
    X_int = np.array(X_list, dtype=np.int32)
    X_int_csr = sp.csr_matrix(X_int)
    init_int = X_int[:2]

    fitted_models = [
        KMeans(k=2).fit(X_list),
        KMeans(k=2).fit(X_int),
        KMeans(k=2, init=init_int, n_init=1).fit(X_list),
        KMeans(k=2, init=init_int, n_init=1).fit(X_int),
        # mini batch kmeans is very unstable on such a small dataset hence
        # we use many inits
        MiniBatchKMeans(k=2, n_init=10, batch_size=2).fit(X_list),
        MiniBatchKMeans(k=2, n_init=10, batch_size=2).fit(X_int),
        MiniBatchKMeans(k=2, n_init=10, batch_size=2).fit(X_int_csr),
        MiniBatchKMeans(k=2, batch_size=2, init=init_int).fit(X_list),
        MiniBatchKMeans(k=2, batch_size=2, init=init_int).fit(X_int),
        MiniBatchKMeans(k=2, batch_size=2, init=init_int).fit(X_int_csr),
    ]
    expected_labels = [0, 1, 1, 0, 0, 1]
    scores = np.array([v_measure_score(expected_labels, km.labels_)
                       for km in fitted_models])
    assert_array_equal(scores, np.ones(scores.shape[0]))


def test_transform():
    k_means = KMeans(k=n_clusters)
    k_means.fit(X)
    X_new = k_means.transform(k_means.cluster_centers_)

    for c in range(n_clusters):
        assert_equal(X_new[c, c], 0)
        for c2 in range(n_clusters):
            if c != c2:
                assert_greater(X_new[c, c2], 0)


def test_n_init():
    """Check that increasing the number of init increases the quality"""
    n_runs = 5
    n_init_range = [1, 5, 10]
    inertia = np.zeros((len(n_init_range), n_runs))
    for i, n_init in enumerate(n_init_range):
        for j in range(n_runs):
            km = KMeans(k=n_clusters, init="random", n_init=n_init,
                        random_state=j).fit(X)
            inertia[i, j] = km.inertia_

    inertia = inertia.mean(axis=1)
    failure_msg = ("Inertia %r should be decreasing"
                   " when n_init is increasing.") % list(inertia)
    for i in range(len(n_init_range) - 1):
        assert_true(inertia[i] >= inertia[i + 1], failure_msg)