File: graph_lasso_.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (537 lines) | stat: -rw-r--r-- 21,411 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
"""GraphLasso: sparse inverse covariance estimation with an l1-penalized
estimator.
"""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD Style
# Copyright: INRIA
import warnings
import operator
import sys
import time

import numpy as np
from scipy import linalg

from .empirical_covariance_ import empirical_covariance, \
                EmpiricalCovariance, log_likelihood

from ..utils import ConvergenceWarning
from ..linear_model import lars_path
from ..linear_model import cd_fast
from ..cross_validation import check_cv, cross_val_score
from ..externals.joblib import Parallel, delayed


###############################################################################
# Helper functions to compute the objective and dual objective functions
# of the l1-penalized estimator
def _objective(mle, precision_, alpha):
    cost = -log_likelihood(mle, precision_)
    cost += alpha * (np.abs(precision_).sum()
                     - np.abs(np.diag(precision_)).sum())
    return cost


def _dual_gap(emp_cov, precision_, alpha):
    """Expression of the dual gap convergence criterion

    The specific definition is given in Duchi "Projected Subgradient Methods
    for Learning Sparse Gaussians".
    """
    gap = np.sum(emp_cov * precision_)
    gap -= precision_.shape[0]
    gap += alpha * (np.abs(precision_).sum()
                    - np.abs(np.diag(precision_)).sum())
    return gap


def alpha_max(emp_cov):
    """Find the maximum alpha for which there are some non-zeros off-diagonal.

    Parameters
    ----------
    emp_cov: 2D array, (n_features, n_features)
        The sample covariance matrix

    Notes
    -----

    This results from the bound for the all the Lasso that are solved
    in GraphLasso: each time, the row of cov corresponds to Xy. As the
    bound for alpha is given by max(abs(Xy)), the result follows.
    """
    A = np.copy(emp_cov)
    A.flat[::A.shape[0] + 1] = 0
    return np.max(np.abs(A))


###############################################################################
# The g-lasso algorithm

def graph_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4,
                max_iter=100, verbose=False, return_costs=False,
                eps=np.finfo(np.float).eps):
    """l1-penalized covariance estimator

    Parameters
    ----------
    emp_cov: 2D ndarray, shape (n_features, n_features)
        Empirical covariance from which to compute the covariance estimate
    alpha: positive float
        The regularization parameter: the higher alpha, the more
        regularization, the sparser the inverse covariance
    cov_init: 2D array (n_features, n_features), optional
        The initial guess for the covariance
    mode: {'cd', 'lars'}
        The Lasso solver to use: coordinate descent or LARS. Use LARS for
        very sparse underlying graphs, where p > n. Elsewhere prefer cd
        which is more numerically stable.
    tol: positive float, optional
        The tolerance to declare convergence: if the dual gap goes below
        this value, iterations are stopped
    max_iter: integer, optional
        The maximum number of iterations
    verbose: boolean, optional
        If verbose is True, the objective function and dual gap are
        printed at each iteration
    return_costs: boolean, optional
        If return_costs is True, the objective function and dual gap
        at each iteration are returned
    eps: float, optional
        The machine-precision regularization in the computation of the
        Cholesky diagonal factors. Increase this for very ill-conditioned
        systems.

    Returns
    -------
    covariance : 2D ndarray, shape (n_features, n_features)
        The estimated covariance matrix
    precision : 2D ndarray, shape (n_features, n_features)
        The estimated (sparse) precision matrix
    costs : list of (objective, dual_gap) pairs
        The list of values of the objective function and the dual gap at
        each iteration. Returned only if return_costs is True

    See Also
    --------
    GraphLasso, GraphLassoCV

    Notes
    -----

    The algorithm employed to solve this problem is the GLasso algorithm,
    from the Friedman 2008 Biostatistics paper. It is the same algorithm
    as in the R `glasso` package.

    One possible difference with the `glasso` R package is that the
    diagonal coefficients are not penalized.
    """
    _, n_features = emp_cov.shape
    if alpha == 0:
        return emp_cov, linalg.inv(emp_cov)
    if cov_init is None:
        covariance_ = emp_cov.copy()
    else:
        covariance_ = cov_init.copy()
    # As a trivial regularization (Tikhonov like), we scale down the
    # off-diagonal coefficients of our starting point: This is needed, as
    # in the cross-validation the cov_init can easily be
    # ill-conditioned, and the CV loop blows. Beside, this takes
    # conservative stand-point on the initial conditions, and it tends to
    # make the convergence go faster.
    covariance_ *= 0.95
    diagonal = emp_cov.flat[::n_features + 1]
    covariance_.flat[::n_features + 1] = diagonal
    precision_ = linalg.pinv(covariance_)

    indices = np.arange(n_features)
    costs = list()
    # The different l1 regression solver have different numerical errors
    if mode == 'cd':
        errors = dict(over='raise', invalid='ignore')
    else:
        errors = dict(invalid='raise')
    try:
        for i in xrange(max_iter):
            for idx in xrange(n_features):
                sub_covariance = covariance_[indices != idx].T[indices != idx]
                row = emp_cov[idx, indices != idx]
                with np.errstate(**errors):
                    if mode == 'cd':
                        # Use coordinate descent
                        coefs = -(precision_[indices != idx, idx]
                                    / (precision_[idx, idx] + 1000 * eps))
                        coefs, _, _ = cd_fast.enet_coordinate_descent_gram(
                                            coefs, alpha, 0, sub_covariance,
                                            row, row, max_iter, tol)
                    else:
                        # Use LARS
                        _, _, coefs = lars_path(sub_covariance, row,
                                            Xy=row, Gram=sub_covariance,
                                            alpha_min=alpha / (n_features - 1),
                                            copy_Gram=True,
                                            method='lars')
                        coefs = coefs[:, -1]
                # Update the precision matrix
                precision_[idx, idx] = 1. / (covariance_[idx, idx] -
                            np.dot(covariance_[indices != idx, idx], coefs))
                precision_[indices != idx, idx] = \
                                            - precision_[idx, idx] * coefs
                precision_[idx, indices != idx] = \
                                            - precision_[idx, idx] * coefs
                coefs = np.dot(sub_covariance, coefs)
                covariance_[idx, indices != idx] = coefs
                covariance_[indices != idx, idx] = coefs
            d_gap = _dual_gap(emp_cov, precision_, alpha)
            cost = _objective(emp_cov, precision_, alpha)
            if verbose:
                print (
                    '[graph_lasso] Iteration % 3i, cost % 3.2e, dual gap %.3e'
                                                % (i, cost, d_gap))
            if return_costs:
                costs.append((cost, d_gap))
            if np.abs(d_gap) < tol:
                break
            if not np.isfinite(cost) and i > 0:
                raise FloatingPointError('Non SPD result: the system is '
                                    'too ill-conditioned for this solver')
        else:
            warnings.warn('graph_lasso: did not converge after %i iteration:'
                            'dual gap: %.3e' % (max_iter, d_gap),
                            ConvergenceWarning)
    except FloatingPointError as e:
        e.args = (e.args[0]
                  + '. The system is too ill-conditioned for this solver',
                 )
        raise e
    if return_costs:
        return covariance_, precision_, costs
    return covariance_, precision_


class GraphLasso(EmpiricalCovariance):
    """Sparse inverse covariance estimation with an l1-penalized estimator.

    Parameters
    ----------
    alpha: positive float, optional
        The regularization parameter: the higher alpha, the more
        regularization, the sparser the inverse covariance
    cov_init: 2D array (n_features, n_features), optional
        The initial guess for the covariance
    mode: {'cd', 'lars'}
        The Lasso solver to use: coordinate descent or LARS. Use LARS for
        very sparse underlying graphs, where p > n. Elsewhere prefer cd
        which is more numerically stable.
    tol: positive float, optional
        The tolerance to declare convergence: if the dual gap goes below
        this value, iterations are stopped
    max_iter: integer, optional
        The maximum number of iterations
    verbose: boolean, optional
        If verbose is True, the objective function and dual gap are
        plotted at each iteration

    Attributes
    ----------
    `covariance_` : array-like, shape (n_features, n_features)
        Estimated covariance matrix

    `precision_` : array-like, shape (n_features, n_features)
        Estimated pseudo inverse matrix.

    See Also
    --------
    graph_lasso, GraphLassoCV
    """

    def __init__(self, alpha=.01, mode='cd', tol=1e-4, max_iter=100,
                 verbose=False):
        self.alpha = alpha
        self.mode = mode
        self.tol = tol
        self.max_iter = max_iter
        self.verbose = verbose
        # The base class needs this for the score method
        self.store_precision = True

    def fit(self, X, y=None):
        emp_cov = empirical_covariance(X)
        self.covariance_, self.precision_ = graph_lasso(emp_cov,
                                        alpha=self.alpha, mode=self.mode,
                                        tol=self.tol, max_iter=self.max_iter,
                                        verbose=self.verbose,
                                        )
        return self


###############################################################################
# Cross-validation with GraphLasso
def graph_lasso_path(X, alphas, cov_init=None, X_test=None, mode='cd',
                 tol=1e-4, max_iter=100, verbose=False):
    """l1-penalized covariance estimator along a path of decreasing alphas

    Parameters
    ----------
    X: 2D ndarray, shape (n_samples, n_features)
        Data from which to compute the covariance estimate
    alphas: list of positive floats
        The list of regularization parameters, decreasing order
    X_test: 2D array, shape (n_test_samples, n_features), optional
        Optional test matrix to measure generalisation error
    mode: {'cd', 'lars'}
        The Lasso solver to use: coordinate descent or LARS. Use LARS for
        very sparse underlying graphs, where p > n. Elsewhere prefer cd
        which is more numerically stable.
    tol: positive float, optional
        The tolerance to declare convergence: if the dual gap goes below
        this value, iterations are stopped
    max_iter: integer, optional
        The maximum number of iterations
    verbose: integer, optional
        The higher the verbosity flag, the more information is printed
        during the fitting.

    Returns
    -------
    covariances_: List of 2D ndarray, shape (n_features, n_features)
        The estimated covariance matrices
    precisions_: List of 2D ndarray, shape (n_features, n_features)
        The estimated (sparse) precision matrices
    scores_: List of float
        The generalisation error (log-likelihood) on the test data.
        Returned only if test data is passed.
    """
    inner_verbose = max(0, verbose - 1)
    emp_cov = empirical_covariance(X)
    if cov_init is None:
        covariance_ = emp_cov.copy()
    else:
        covariance_ = cov_init
    covariances_ = list()
    precisions_ = list()
    scores_ = list()
    if X_test is not None:
        test_emp_cov = empirical_covariance(X_test)
    for alpha in alphas:
        try:
            # Capture the errors, and move on
            covariance_, precision_ = graph_lasso(emp_cov, alpha=alpha,
                                    cov_init=covariance_, mode=mode, tol=tol,
                                    max_iter=max_iter,
                                    verbose=inner_verbose)
            covariances_.append(covariance_)
            precisions_.append(precision_)
            if X_test is not None:
                this_score = log_likelihood(test_emp_cov, precision_)
        except FloatingPointError:
            this_score = -np.inf
            covariances_.append(np.nan)
            precisions_.append(np.nan)
        if X_test is not None:
            if not np.isfinite(this_score):
                this_score = -np.inf
            scores_.append(this_score)
        if verbose == 1:
            sys.stderr.write('.')
        elif verbose:
            if X_test is not None:
                print '[graph_lasso_path] alpha: %.2e, score: %.2e' % (alpha,
                                                            this_score)
            else:
                print '[graph_lasso_path] alpha: %.2e' % alpha
    if X_test is not None:
        return covariances_, precisions_, scores_
    return covariances_, precisions_


class GraphLassoCV(GraphLasso):
    """Sparse inverse covariance w/ cross-validated choice of the l1 penality

    Parameters
    ----------
    alphas: integer, or list positive float, optional
        If an integer is given, it fixes the number of points on the
        grids of alpha to be used. If a list is given, it gives the
        grid to be used. See the notes in the class docstring for
        more details.
    n_refinements: strictly positive integer
        The number of time the grid is refined. Not used if explicit
        values of alphas are passed.
    cv : crossvalidation generator, optional
        see sklearn.cross_validation module. If None is passed, default to
        a 3-fold strategy
    tol: positive float, optional
        The tolerance to declare convergence: if the dual gap goes below
        this value, iterations are stopped
    max_iter: integer, optional
        The maximum number of iterations
    mode: {'cd', 'lars'}
        The Lasso solver to use: coordinate descent or LARS. Use LARS for
        very sparse underlying graphs, where p > n. Elsewhere prefer cd
        which is more numerically stable.
    n_jobs: int, optional
        number of jobs to run in parallel (default 1)
    verbose: boolean, optional
        If verbose is True, the objective function and dual gap are
        print at each iteration

    Attributes
    ----------
    `covariance_` : array-like, shape (n_features, n_features)
        Estimated covariance matrix

    `precision_` : array-like, shape (n_features, n_features)
        Estimated precision matrix (inverse covariance).

    `alpha_`: float
        Penalization parameter selected

    `cv_alphas_`: list of float
        All the penalization parameters explored

    `cv_scores`: 2D array (n_alphas, n_folds)
        The log-likelihood score on left-out data across the folds.

    See Also
    --------
    graph_lasso, GraphLasso

    Notes
    -----
    The search for the optimal alpha is done on an iteratively refined
    grid: first the cross-validated scores on a grid are computed, then
    a new refined grid is center around the maximum...

    One of the challenges that we have to face is that the solvers can
    fail to converge to a well-conditioned estimate. The corresponding
    values of alpha then come out as missing values, but the optimum may
    be close to these missing values.
    """

    def __init__(self, alphas=4, n_refinements=4, cv=None, tol=1e-4,
                 max_iter=100, mode='cd', n_jobs=1, verbose=False):
        self.alphas = alphas
        self.n_refinements = n_refinements
        self.mode = mode
        self.tol = tol
        self.max_iter = max_iter
        self.verbose = verbose
        self.cv = cv
        self.n_jobs = n_jobs
        # The base class needs this for the score method
        self.store_precision = True

    def fit(self, X, y=None):
        X = np.asarray(X)
        emp_cov = empirical_covariance(X)

        cv = check_cv(self.cv, X, y, classifier=False)

        # List of (alpha, scores, covs)
        path = list()
        n_alphas = self.alphas
        inner_verbose = max(0, self.verbose - 1)

        if operator.isSequenceType(n_alphas):
            alphas = self.alphas
            n_refinements = 1
        else:
            n_refinements = self.n_refinements
            alpha_1 = alpha_max(emp_cov)
            alpha_0 = 1e-2 * alpha_1
            alphas = np.logspace(np.log10(alpha_0),
                                            np.log10(alpha_1),
                                            n_alphas)[::-1]
        covs_init = (None, None, None)

        t0 = time.time()
        for i in range(n_refinements):
            with warnings.catch_warnings():
                # No need to see the convergence warnings on this grid:
                # they will always be points that will not converge
                # during the cross-validation
                warnings.simplefilter('ignore',  ConvergenceWarning)
                # Compute the cross-validated loss on the current grid
                this_path = Parallel(
                    n_jobs=self.n_jobs,
                    verbose=self.verbose)(
                        delayed(graph_lasso_path)(
                            X[train], alphas=alphas,
                            X_test=X[test], mode=self.mode,
                            tol=self.tol,
                            max_iter=int(.1 * self.max_iter),
                            verbose=inner_verbose)
                        for (train, test), cov_init in zip(cv, covs_init))

            # Little danse to transform the list in what we need
            covs, _, scores = zip(*this_path)
            covs = zip(*covs)
            scores = zip(*scores)
            path.extend(zip(alphas, scores, covs))
            path = sorted(path, key=operator.itemgetter(0), reverse=True)

            # Find the maximum (we avoid using built in 'max' function to
            # have a fully-reproducible selection of the smallest alpha
            # is case of equality)
            best_score = -np.inf
            last_finite_idx = 0
            for index, (alpha, scores, _) in enumerate(path):
                this_score = np.mean(scores)
                if this_score >= .1 / np.finfo(np.float).eps:
                    this_score = np.nan
                if np.isfinite(this_score):
                    last_finite_idx = index
                if this_score >= best_score:
                    best_score = this_score
                    best_index = index

            # Refine our grid
            if best_index == 0:
                # We do not need to go back: we have choosen
                # the highest value of alpha for which there are
                # non-zero coefficients
                alpha_1 = path[0][0]
                alpha_0 = path[1][0]
                covs_init = path[0][-1]
            elif (best_index == last_finite_idx
                        and not best_index == len(path) - 1):
                # We have non-converged models on the upper bound of the
                # grid, we need to refine the grid there
                alpha_1 = path[best_index][0]
                alpha_0 = path[best_index + 1][0]
                covs_init = path[best_index][-1]
            elif best_index == len(path) - 1:
                alpha_1 = path[best_index][0]
                alpha_0 = 0.01 * path[best_index][0]
                covs_init = path[best_index][-1]
            else:
                alpha_1 = path[best_index - 1][0]
                alpha_0 = path[best_index + 1][0]
                covs_init = path[best_index - 1][-1]
            alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0),
                                 n_alphas + 2)
            alphas = alphas[1:-1]
            if self.verbose and n_refinements > 1:
                print '[GraphLassoCV] Done refinement % 2i out of %i: % 3is'\
                        % (i + 1, n_refinements, time.time() - t0)

        path = zip(*path)
        cv_scores = list(path[1])
        alphas = list(path[0])
        # Finally, compute the score with alpha = 0
        alphas.append(0)
        cv_scores.append(cross_val_score(EmpiricalCovariance(), X,
                                         cv=cv, n_jobs=self.n_jobs,
                                         verbose=inner_verbose))
        self.cv_scores = np.array(cv_scores)
        best_alpha = alphas[best_index]
        self.alpha_ = best_alpha
        self.cv_alphas_ = alphas

        # Finally fit the model with the selected alpha
        self.covariance_, self.precision_ = graph_lasso(emp_cov,
                        alpha=best_alpha, mode=self.mode, tol=self.tol,
                        max_iter=self.max_iter, verbose=inner_verbose)
        return self