1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
"""GraphLasso: sparse inverse covariance estimation with an l1-penalized
estimator.
"""
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD Style
# Copyright: INRIA
import warnings
import operator
import sys
import time
import numpy as np
from scipy import linalg
from .empirical_covariance_ import empirical_covariance, \
EmpiricalCovariance, log_likelihood
from ..utils import ConvergenceWarning
from ..linear_model import lars_path
from ..linear_model import cd_fast
from ..cross_validation import check_cv, cross_val_score
from ..externals.joblib import Parallel, delayed
###############################################################################
# Helper functions to compute the objective and dual objective functions
# of the l1-penalized estimator
def _objective(mle, precision_, alpha):
cost = -log_likelihood(mle, precision_)
cost += alpha * (np.abs(precision_).sum()
- np.abs(np.diag(precision_)).sum())
return cost
def _dual_gap(emp_cov, precision_, alpha):
"""Expression of the dual gap convergence criterion
The specific definition is given in Duchi "Projected Subgradient Methods
for Learning Sparse Gaussians".
"""
gap = np.sum(emp_cov * precision_)
gap -= precision_.shape[0]
gap += alpha * (np.abs(precision_).sum()
- np.abs(np.diag(precision_)).sum())
return gap
def alpha_max(emp_cov):
"""Find the maximum alpha for which there are some non-zeros off-diagonal.
Parameters
----------
emp_cov: 2D array, (n_features, n_features)
The sample covariance matrix
Notes
-----
This results from the bound for the all the Lasso that are solved
in GraphLasso: each time, the row of cov corresponds to Xy. As the
bound for alpha is given by max(abs(Xy)), the result follows.
"""
A = np.copy(emp_cov)
A.flat[::A.shape[0] + 1] = 0
return np.max(np.abs(A))
###############################################################################
# The g-lasso algorithm
def graph_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4,
max_iter=100, verbose=False, return_costs=False,
eps=np.finfo(np.float).eps):
"""l1-penalized covariance estimator
Parameters
----------
emp_cov: 2D ndarray, shape (n_features, n_features)
Empirical covariance from which to compute the covariance estimate
alpha: positive float
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance
cov_init: 2D array (n_features, n_features), optional
The initial guess for the covariance
mode: {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol: positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped
max_iter: integer, optional
The maximum number of iterations
verbose: boolean, optional
If verbose is True, the objective function and dual gap are
printed at each iteration
return_costs: boolean, optional
If return_costs is True, the objective function and dual gap
at each iteration are returned
eps: float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
Returns
-------
covariance : 2D ndarray, shape (n_features, n_features)
The estimated covariance matrix
precision : 2D ndarray, shape (n_features, n_features)
The estimated (sparse) precision matrix
costs : list of (objective, dual_gap) pairs
The list of values of the objective function and the dual gap at
each iteration. Returned only if return_costs is True
See Also
--------
GraphLasso, GraphLassoCV
Notes
-----
The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm
as in the R `glasso` package.
One possible difference with the `glasso` R package is that the
diagonal coefficients are not penalized.
"""
_, n_features = emp_cov.shape
if alpha == 0:
return emp_cov, linalg.inv(emp_cov)
if cov_init is None:
covariance_ = emp_cov.copy()
else:
covariance_ = cov_init.copy()
# As a trivial regularization (Tikhonov like), we scale down the
# off-diagonal coefficients of our starting point: This is needed, as
# in the cross-validation the cov_init can easily be
# ill-conditioned, and the CV loop blows. Beside, this takes
# conservative stand-point on the initial conditions, and it tends to
# make the convergence go faster.
covariance_ *= 0.95
diagonal = emp_cov.flat[::n_features + 1]
covariance_.flat[::n_features + 1] = diagonal
precision_ = linalg.pinv(covariance_)
indices = np.arange(n_features)
costs = list()
# The different l1 regression solver have different numerical errors
if mode == 'cd':
errors = dict(over='raise', invalid='ignore')
else:
errors = dict(invalid='raise')
try:
for i in xrange(max_iter):
for idx in xrange(n_features):
sub_covariance = covariance_[indices != idx].T[indices != idx]
row = emp_cov[idx, indices != idx]
with np.errstate(**errors):
if mode == 'cd':
# Use coordinate descent
coefs = -(precision_[indices != idx, idx]
/ (precision_[idx, idx] + 1000 * eps))
coefs, _, _ = cd_fast.enet_coordinate_descent_gram(
coefs, alpha, 0, sub_covariance,
row, row, max_iter, tol)
else:
# Use LARS
_, _, coefs = lars_path(sub_covariance, row,
Xy=row, Gram=sub_covariance,
alpha_min=alpha / (n_features - 1),
copy_Gram=True,
method='lars')
coefs = coefs[:, -1]
# Update the precision matrix
precision_[idx, idx] = 1. / (covariance_[idx, idx] -
np.dot(covariance_[indices != idx, idx], coefs))
precision_[indices != idx, idx] = \
- precision_[idx, idx] * coefs
precision_[idx, indices != idx] = \
- precision_[idx, idx] * coefs
coefs = np.dot(sub_covariance, coefs)
covariance_[idx, indices != idx] = coefs
covariance_[indices != idx, idx] = coefs
d_gap = _dual_gap(emp_cov, precision_, alpha)
cost = _objective(emp_cov, precision_, alpha)
if verbose:
print (
'[graph_lasso] Iteration % 3i, cost % 3.2e, dual gap %.3e'
% (i, cost, d_gap))
if return_costs:
costs.append((cost, d_gap))
if np.abs(d_gap) < tol:
break
if not np.isfinite(cost) and i > 0:
raise FloatingPointError('Non SPD result: the system is '
'too ill-conditioned for this solver')
else:
warnings.warn('graph_lasso: did not converge after %i iteration:'
'dual gap: %.3e' % (max_iter, d_gap),
ConvergenceWarning)
except FloatingPointError as e:
e.args = (e.args[0]
+ '. The system is too ill-conditioned for this solver',
)
raise e
if return_costs:
return covariance_, precision_, costs
return covariance_, precision_
class GraphLasso(EmpiricalCovariance):
"""Sparse inverse covariance estimation with an l1-penalized estimator.
Parameters
----------
alpha: positive float, optional
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance
cov_init: 2D array (n_features, n_features), optional
The initial guess for the covariance
mode: {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol: positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped
max_iter: integer, optional
The maximum number of iterations
verbose: boolean, optional
If verbose is True, the objective function and dual gap are
plotted at each iteration
Attributes
----------
`covariance_` : array-like, shape (n_features, n_features)
Estimated covariance matrix
`precision_` : array-like, shape (n_features, n_features)
Estimated pseudo inverse matrix.
See Also
--------
graph_lasso, GraphLassoCV
"""
def __init__(self, alpha=.01, mode='cd', tol=1e-4, max_iter=100,
verbose=False):
self.alpha = alpha
self.mode = mode
self.tol = tol
self.max_iter = max_iter
self.verbose = verbose
# The base class needs this for the score method
self.store_precision = True
def fit(self, X, y=None):
emp_cov = empirical_covariance(X)
self.covariance_, self.precision_ = graph_lasso(emp_cov,
alpha=self.alpha, mode=self.mode,
tol=self.tol, max_iter=self.max_iter,
verbose=self.verbose,
)
return self
###############################################################################
# Cross-validation with GraphLasso
def graph_lasso_path(X, alphas, cov_init=None, X_test=None, mode='cd',
tol=1e-4, max_iter=100, verbose=False):
"""l1-penalized covariance estimator along a path of decreasing alphas
Parameters
----------
X: 2D ndarray, shape (n_samples, n_features)
Data from which to compute the covariance estimate
alphas: list of positive floats
The list of regularization parameters, decreasing order
X_test: 2D array, shape (n_test_samples, n_features), optional
Optional test matrix to measure generalisation error
mode: {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol: positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped
max_iter: integer, optional
The maximum number of iterations
verbose: integer, optional
The higher the verbosity flag, the more information is printed
during the fitting.
Returns
-------
covariances_: List of 2D ndarray, shape (n_features, n_features)
The estimated covariance matrices
precisions_: List of 2D ndarray, shape (n_features, n_features)
The estimated (sparse) precision matrices
scores_: List of float
The generalisation error (log-likelihood) on the test data.
Returned only if test data is passed.
"""
inner_verbose = max(0, verbose - 1)
emp_cov = empirical_covariance(X)
if cov_init is None:
covariance_ = emp_cov.copy()
else:
covariance_ = cov_init
covariances_ = list()
precisions_ = list()
scores_ = list()
if X_test is not None:
test_emp_cov = empirical_covariance(X_test)
for alpha in alphas:
try:
# Capture the errors, and move on
covariance_, precision_ = graph_lasso(emp_cov, alpha=alpha,
cov_init=covariance_, mode=mode, tol=tol,
max_iter=max_iter,
verbose=inner_verbose)
covariances_.append(covariance_)
precisions_.append(precision_)
if X_test is not None:
this_score = log_likelihood(test_emp_cov, precision_)
except FloatingPointError:
this_score = -np.inf
covariances_.append(np.nan)
precisions_.append(np.nan)
if X_test is not None:
if not np.isfinite(this_score):
this_score = -np.inf
scores_.append(this_score)
if verbose == 1:
sys.stderr.write('.')
elif verbose:
if X_test is not None:
print '[graph_lasso_path] alpha: %.2e, score: %.2e' % (alpha,
this_score)
else:
print '[graph_lasso_path] alpha: %.2e' % alpha
if X_test is not None:
return covariances_, precisions_, scores_
return covariances_, precisions_
class GraphLassoCV(GraphLasso):
"""Sparse inverse covariance w/ cross-validated choice of the l1 penality
Parameters
----------
alphas: integer, or list positive float, optional
If an integer is given, it fixes the number of points on the
grids of alpha to be used. If a list is given, it gives the
grid to be used. See the notes in the class docstring for
more details.
n_refinements: strictly positive integer
The number of time the grid is refined. Not used if explicit
values of alphas are passed.
cv : crossvalidation generator, optional
see sklearn.cross_validation module. If None is passed, default to
a 3-fold strategy
tol: positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped
max_iter: integer, optional
The maximum number of iterations
mode: {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
n_jobs: int, optional
number of jobs to run in parallel (default 1)
verbose: boolean, optional
If verbose is True, the objective function and dual gap are
print at each iteration
Attributes
----------
`covariance_` : array-like, shape (n_features, n_features)
Estimated covariance matrix
`precision_` : array-like, shape (n_features, n_features)
Estimated precision matrix (inverse covariance).
`alpha_`: float
Penalization parameter selected
`cv_alphas_`: list of float
All the penalization parameters explored
`cv_scores`: 2D array (n_alphas, n_folds)
The log-likelihood score on left-out data across the folds.
See Also
--------
graph_lasso, GraphLasso
Notes
-----
The search for the optimal alpha is done on an iteratively refined
grid: first the cross-validated scores on a grid are computed, then
a new refined grid is center around the maximum...
One of the challenges that we have to face is that the solvers can
fail to converge to a well-conditioned estimate. The corresponding
values of alpha then come out as missing values, but the optimum may
be close to these missing values.
"""
def __init__(self, alphas=4, n_refinements=4, cv=None, tol=1e-4,
max_iter=100, mode='cd', n_jobs=1, verbose=False):
self.alphas = alphas
self.n_refinements = n_refinements
self.mode = mode
self.tol = tol
self.max_iter = max_iter
self.verbose = verbose
self.cv = cv
self.n_jobs = n_jobs
# The base class needs this for the score method
self.store_precision = True
def fit(self, X, y=None):
X = np.asarray(X)
emp_cov = empirical_covariance(X)
cv = check_cv(self.cv, X, y, classifier=False)
# List of (alpha, scores, covs)
path = list()
n_alphas = self.alphas
inner_verbose = max(0, self.verbose - 1)
if operator.isSequenceType(n_alphas):
alphas = self.alphas
n_refinements = 1
else:
n_refinements = self.n_refinements
alpha_1 = alpha_max(emp_cov)
alpha_0 = 1e-2 * alpha_1
alphas = np.logspace(np.log10(alpha_0),
np.log10(alpha_1),
n_alphas)[::-1]
covs_init = (None, None, None)
t0 = time.time()
for i in range(n_refinements):
with warnings.catch_warnings():
# No need to see the convergence warnings on this grid:
# they will always be points that will not converge
# during the cross-validation
warnings.simplefilter('ignore', ConvergenceWarning)
# Compute the cross-validated loss on the current grid
this_path = Parallel(
n_jobs=self.n_jobs,
verbose=self.verbose)(
delayed(graph_lasso_path)(
X[train], alphas=alphas,
X_test=X[test], mode=self.mode,
tol=self.tol,
max_iter=int(.1 * self.max_iter),
verbose=inner_verbose)
for (train, test), cov_init in zip(cv, covs_init))
# Little danse to transform the list in what we need
covs, _, scores = zip(*this_path)
covs = zip(*covs)
scores = zip(*scores)
path.extend(zip(alphas, scores, covs))
path = sorted(path, key=operator.itemgetter(0), reverse=True)
# Find the maximum (we avoid using built in 'max' function to
# have a fully-reproducible selection of the smallest alpha
# is case of equality)
best_score = -np.inf
last_finite_idx = 0
for index, (alpha, scores, _) in enumerate(path):
this_score = np.mean(scores)
if this_score >= .1 / np.finfo(np.float).eps:
this_score = np.nan
if np.isfinite(this_score):
last_finite_idx = index
if this_score >= best_score:
best_score = this_score
best_index = index
# Refine our grid
if best_index == 0:
# We do not need to go back: we have choosen
# the highest value of alpha for which there are
# non-zero coefficients
alpha_1 = path[0][0]
alpha_0 = path[1][0]
covs_init = path[0][-1]
elif (best_index == last_finite_idx
and not best_index == len(path) - 1):
# We have non-converged models on the upper bound of the
# grid, we need to refine the grid there
alpha_1 = path[best_index][0]
alpha_0 = path[best_index + 1][0]
covs_init = path[best_index][-1]
elif best_index == len(path) - 1:
alpha_1 = path[best_index][0]
alpha_0 = 0.01 * path[best_index][0]
covs_init = path[best_index][-1]
else:
alpha_1 = path[best_index - 1][0]
alpha_0 = path[best_index + 1][0]
covs_init = path[best_index - 1][-1]
alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0),
n_alphas + 2)
alphas = alphas[1:-1]
if self.verbose and n_refinements > 1:
print '[GraphLassoCV] Done refinement % 2i out of %i: % 3is'\
% (i + 1, n_refinements, time.time() - t0)
path = zip(*path)
cv_scores = list(path[1])
alphas = list(path[0])
# Finally, compute the score with alpha = 0
alphas.append(0)
cv_scores.append(cross_val_score(EmpiricalCovariance(), X,
cv=cv, n_jobs=self.n_jobs,
verbose=inner_verbose))
self.cv_scores = np.array(cv_scores)
best_alpha = alphas[best_index]
self.alpha_ = best_alpha
self.cv_alphas_ = alphas
# Finally fit the model with the selected alpha
self.covariance_, self.precision_ = graph_lasso(emp_cov,
alpha=best_alpha, mode=self.mode, tol=self.tol,
max_iter=self.max_iter, verbose=inner_verbose)
return self
|