1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
"""
Class for outlier detection.
This class provides a framework for outlier detection. It consists in
several methods that can be added to a covariance estimator in order to
assess the outlying-ness of the observations of a data set.
Such a "outlier detector" object is proposed constructed from a robust
covariance estimator (the Minimum Covariance Determinant).
"""
# Author: Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD Style.
import numpy as np
import scipy as sp
from . import MinCovDet
from ..base import ClassifierMixin
from ..utils import deprecated
class OutlierDetectionMixin(ClassifierMixin):
"""Set of methods for outliers detection with covariance estimators.
Parameters
----------
contamination: float, 0. < contamination < 0.5
The amount of contamination of the data set, i.e. the proportion
of outliers in the data set.
Notes
-----
Outlier detection from covariance estimation may break or not
perform well in high-dimensional settings. In particular, one will
always take care to work with ``n_samples > n_features ** 2``.
"""
def __init__(self, contamination=0.1):
self.contamination = contamination
self.threshold = None
def decision_function(self, X, raw_mahalanobis=False):
"""Compute the decision function of the given observations.
Parameters
----------
X: array-like, shape (n_samples, n_features)
raw_mahalanobis: bool
Whether or not to consider raw Mahalanobis distances as the
decision function. Must be False (default) for compatibility
with the others outlier detection tools.
Returns
-------
decision: array-like, shape (n_samples, )
The values of the decision function for each observations.
It is equal to the Mahalanobis distances if `raw_mahalanobis`
is True. By default (``raw_mahalanobis=True``), it is equal
to the cubic root of the shifted Mahalanobis distances.
In that case, the threshold for being an outlier is 0, which
ensures a compatibility with other outlier detection tools
such as the One-Class SVM.
"""
X_centered = X - self.location_
mahal_dist = self.mahalanobis(X_centered)
if raw_mahalanobis:
decision = mahal_dist
else:
if self.threshold is None:
raise Exception("Please fit data before predicting")
transformed_mahal_dist = mahal_dist ** 0.33
decision = self.threshold ** 0.33 - transformed_mahal_dist
return decision
def predict(self, X):
"""Outlyingness of observations in X according to the fitted model.
Parameters
----------
X: array-like, shape = (n_samples, n_features)
Returns
-------
is_outliers: array, shape = (n_samples, ), dtype = bool
For each observations, tells whether or not it should be considered
as an outlier according to the fitted model.
threshold: float,
The values of the less outlying point's decision function.
"""
if self.threshold is None:
raise Exception("Please fit data before predicting")
is_inlier = -np.ones(X.shape[0], dtype=int)
if self.contamination is not None:
values = self.decision_function(X, raw_mahalanobis=True)
is_inlier[values <= self.threshold] = 1
else:
raise NotImplemented("You must provide a contamination rate.")
return is_inlier
class EllipticEnvelope(OutlierDetectionMixin, MinCovDet):
"""An object for detecting outliers in a Gaussian distributed dataset.
Attributes
----------
`contamination`: float, 0. < contamination < 0.5
The amount of contamination of the data set, i.e. the proportion of \
outliers in the data set.
`location_`: array-like, shape (n_features,)
Estimated robust location
`covariance_`: array-like, shape (n_features, n_features)
Estimated robust covariance matrix
`precision_`: array-like, shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
`support_`: array-like, shape (n_samples,)
A mask of the observations that have been used to compute the
robust estimates of location and shape.
Parameters
----------
store_precision: bool
Specify if the estimated precision is stored
assume_centered: Boolean
If True, the support of robust location and covariance estimates
is computed, and a covariance estimate is recomputed from it,
without centering the data.
Useful to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, the robust location and covariance are directly computed
with the FastMCD algorithm without additional treatment.
support_fraction: float, 0 < support_fraction < 1
The proportion of points to be included in the support of the raw
MCD estimate. Default is ``None``, which implies that the minimum
value of support_fraction will be used within the algorithm:
[n_sample + n_features + 1] / 2
contamination: float, 0. < contamination < 0.5
The amount of contamination of the data set, i.e. the proportion
of outliers in the data set.
See Also
--------
EmpiricalCovariance, MinCovDet
Notes
-----
Outlier detection from covariance estimation may break or not
perform well in high-dimensional settings. In particular, one will
always take care to work with ``n_samples > n_features ** 2``.
References
----------
.. [1] Rousseeuw, P.J., Van Driessen, K. "A fast algorithm for the minimum
covariance determinant estimator" Technometrics 41(3), 212 (1999)
"""
def __init__(self, store_precision=True, assume_centered=False,
support_fraction=None, contamination=0.1):
MinCovDet.__init__(self, store_precision=store_precision,
assume_centered=assume_centered,
support_fraction=support_fraction)
OutlierDetectionMixin.__init__(self, contamination=contamination)
def fit(self, X):
"""
"""
MinCovDet.fit(self, X)
X_centered = X - self.location_
values = self.mahalanobis(X_centered)
self.threshold = sp.stats.scoreatpercentile(
values, 100. * (1. - self.contamination))
return self
# Deprecated classes
@deprecated("Use EllipticEnvelope instead")
class EllipticEnvelop(EllipticEnvelope):
pass
|