1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
"""
Covariance estimators using shrinkage.
Shrinkage corresponds to regularising `cov` using a convex combination:
shrunk_cov = (1-shrinkage)*cov + shrinkage*structured_estimate.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD Style.
# avoid division truncation
from __future__ import division
import warnings
import numpy as np
from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance
from ..utils import array2d
###############################################################################
# ShrunkCovariance estimator
def shrunk_covariance(emp_cov, shrinkage=0.1):
"""Calculates a covariance matrix shrunk on the diagonal
Parameters
----------
emp_cov: array-like, shape (n_features, n_features)
Covariance matrix to be shrunk
shrinkage: float, 0 <= shrinkage <= 1
coefficient in the convex combination used for the computation
of the shrunk estimate.
Returns
-------
shrunk_cov: array-like
shrunk covariance
Notes
-----
The regularized (shrunk) covariance is given by
(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)
where mu = trace(cov) / n_features
"""
emp_cov = array2d(emp_cov)
n_features = emp_cov.shape[0]
mu = np.trace(emp_cov) / n_features
shrunk_cov = (1. - shrinkage) * emp_cov
shrunk_cov.flat[::n_features + 1] += shrinkage * mu
return shrunk_cov
class ShrunkCovariance(EmpiricalCovariance):
"""Covariance estimator with shrinkage
Parameters
----------
store_precision : bool
Specify if the estimated precision is stored
shrinkage: float, 0 <= shrinkage <= 1
coefficient in the convex combination used for the computation
of the shrunk estimate.
Attributes
----------
`covariance_` : array-like, shape (n_features, n_features)
Estimated covariance matrix
`precision_` : array-like, shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
`shrinkage`: float, 0 <= shrinkage <= 1
coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularized covariance is given by
(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)
where mu = trace(cov) / n_features
"""
def __init__(self, store_precision=True, shrinkage=0.1):
self.store_precision = store_precision
self.shrinkage = shrinkage
def fit(self, X, assume_centered=False):
""" Fits the shrunk covariance model
according to the given training data and parameters.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples
and n_features is the number of features.
assume_centered: Boolean
If True, data are not centered before computation.
Usefull to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data are centered before computation.
Returns
-------
self : object
Returns self.
"""
empirical_cov = empirical_covariance(
X, assume_centered=assume_centered)
covariance = shrunk_covariance(empirical_cov, self.shrinkage)
self._set_estimates(covariance)
return self
###############################################################################
# Ledoit-Wolf estimator
def ledoit_wolf(X, assume_centered=False):
"""Estimates the shrunk Ledoit-Wolf covariance matrix.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Data from which to compute the covariance estimate
assume_centered: Boolean
If True, data are not centered before computation.
Usefull to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data are centered before computation.
Returns
-------
shrunk_cov: array-like, shape (n_features, n_features)
Shrunk covariance
shrinkage: float
coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularised (shrunk) covariance is:
(1 - shrinkage)*cov
+ shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
"""
X = np.asarray(X)
# for only one feature, the result is the same whatever the shrinkage
if len(X.shape) == 2 and X.shape[1] == 1:
if not assume_centered:
X = X - X.mean()
return np.atleast_2d((X ** 2).mean()), 0.
if X.ndim == 1:
X = np.reshape(X, (1, -1))
warnings.warn("Only one sample available. " \
"You may want to reshape your data array")
n_samples = 1
n_features = X.size
else:
n_samples, n_features = X.shape
# optionaly center data
if not assume_centered:
X = X - X.mean(0)
emp_cov = empirical_covariance(X, assume_centered=assume_centered)
mu = np.trace(emp_cov) / n_features
delta_ = emp_cov.copy()
delta_.flat[::n_features + 1] -= mu
delta = (delta_ ** 2).sum() / n_features
X2 = X ** 2
beta_ = 1. / (n_features * n_samples) \
* np.sum(np.dot(X2.T, X2) / n_samples - emp_cov ** 2)
beta = min(beta_, delta)
shrinkage = beta / delta
shrunk_cov = (1. - shrinkage) * emp_cov
shrunk_cov.flat[::n_features + 1] += shrinkage * mu
return shrunk_cov, shrinkage
class LedoitWolf(EmpiricalCovariance):
"""LedoitWolf Estimator
Ledoit-Wolf is a particular form of shrinkage, where the shrinkage
coefficient is computed using O.Ledoit and M.Wolf's formula as
described in "A Well-Conditioned Estimator for Large-Dimensional
Covariance Matrices", Ledoit and Wolf, Journal of Multivariate
Analysis, Volume 88, Issue 2, February 2004, pages 365-411.
Parameters
----------
store_precision : bool
Specify if the estimated precision is stored
Attributes
----------
`covariance_` : array-like, shape (n_features, n_features)
Estimated covariance matrix
`precision_` : array-like, shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
`shrinkage_`: float, 0 <= shrinkage <= 1
coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularised covariance is::
(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)
where mu = trace(cov) / n_features
and shinkage is given by the Ledoit and Wolf formula (see References)
References
----------
"A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices",
Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2,
February 2004, pages 365-411.
"""
def fit(self, X, assume_centered=False):
""" Fits the Ledoit-Wolf shrunk covariance model
according to the given training data and parameters.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples
and n_features is the number of features.
assume_centered: Boolean
If True, data are not centered before computation.
Usefull to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data are centered before computation.
Returns
-------
self : object
Returns self.
"""
covariance, shrinkage = ledoit_wolf(X, assume_centered=assume_centered)
self.shrinkage_ = shrinkage
self._set_estimates(covariance)
return self
###############################################################################
# OAS estimator
def oas(X, assume_centered=False):
"""Estimate covariance with the Oracle Approximating Shrinkage algorithm.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Data from which to compute the covariance estimate
assume_centered: boolean
If True, data are not centered before computation.
Usefull to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data are centered before computation.
Returns
-------
shrunk_cov: array-like, shape (n_features, n_features)
Shrunk covariance
shrinkage: float
coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularised (shrunk) covariance is:
(1 - shrinkage)*cov
+ shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
"""
X = np.asarray(X)
# for only one feature, the result is the same whatever the shrinkage
if len(X.shape) == 2 and X.shape[1] == 1:
if not assume_centered:
X = X - X.mean()
return np.atleast_2d((X ** 2).mean()), 0.
if X.ndim == 1:
X = np.reshape(X, (1, -1))
warnings.warn("Only one sample available. " \
"You may want to reshape your data array")
n_samples = 1
n_features = X.size
else:
n_samples, n_features = X.shape
emp_cov = empirical_covariance(X, assume_centered=assume_centered)
mu = np.trace(emp_cov) / n_features
# formula from Chen et al.'s **implementation**
alpha = np.mean(emp_cov ** 2)
num = alpha + mu ** 2
den = (n_samples + 1.) * (alpha - (mu ** 2) / n_features)
shrinkage = min(num / den, 1.)
shrunk_cov = (1. - shrinkage) * emp_cov
shrunk_cov.flat[::n_features + 1] += shrinkage * mu
return shrunk_cov, shrinkage
class OAS(EmpiricalCovariance):
"""
Oracle Approximating Shrinkage Estimator
OAS is a particular form of shrinkage described in
"Shrinkage Algorithms for MMSE Covariance Estimation"
Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
The formula used here does not correspond to the one given in the
article. It has been taken from the matlab programm available from the
authors webpage (https://tbayes.eecs.umich.edu/yilun/covestimation).
Parameters
----------
store_precision : bool
Specify if the estimated precision is stored
Attributes
----------
`covariance_` : array-like, shape (n_features, n_features)
Estimated covariance matrix
`precision_` : array-like, shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
`shrinkage_`: float, 0 <= shrinkage <= 1
coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularised covariance is::
(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)
where mu = trace(cov) / n_features
and shinkage is given by the OAS formula (see References)
References
----------
"Shrinkage Algorithms for MMSE Covariance Estimation"
Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
"""
def fit(self, X, assume_centered=False):
""" Fits the Oracle Approximating Shrinkage covariance model
according to the given training data and parameters.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples
and n_features is the number of features.
assume_centered: boolean
If True, data are not centered before computation.
Usefull to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data are centered before computation.
Returns
-------
self : object
Returns self.
"""
covariance, shrinkage = oas(X, assume_centered=assume_centered)
self.shrinkage_ = shrinkage
self._set_estimates(covariance)
return self
|