File: test_covariance.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (218 lines) | stat: -rw-r--r-- 8,673 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD Style.

from numpy.testing import assert_almost_equal, assert_array_almost_equal

import numpy as np

from sklearn import datasets
from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \
    ShrunkCovariance, shrunk_covariance, LedoitWolf, ledoit_wolf, OAS, oas

X = datasets.load_iris().data
X_1d = X[:, 0]
n_samples, n_features = X.shape


def test_covariance():
    """Tests Covariance module on a simple dataset.

    """
    # test covariance fit from data
    cov = EmpiricalCovariance()
    cov.fit(X)
    assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4)
    assert_almost_equal(cov.error_norm(empirical_covariance(X)), 0)
    assert_almost_equal(
        cov.error_norm(empirical_covariance(X), norm='spectral'), 0)
    assert_almost_equal(
        cov.error_norm(empirical_covariance(X), norm='frobenius'), 0)
    assert_almost_equal(
        cov.error_norm(empirical_covariance(X), scaling=False), 0)
    assert_almost_equal(
        cov.error_norm(empirical_covariance(X), squared=False), 0)
    # Mahalanobis distances computation test
    mahal_dist = cov.mahalanobis(X)
    assert(np.amax(mahal_dist) < 250)
    assert(np.amin(mahal_dist) > 50)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    cov = EmpiricalCovariance()
    cov.fit(X_1d)
    assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4)
    assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0)
    assert_almost_equal(
        cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0)

    # test integer type
    X_integer = np.asarray([[0, 1], [1, 0]])
    result = np.asarray([[0.25, -0.25], [-0.25, 0.25]])
    assert_array_almost_equal(empirical_covariance(X_integer), result)


def test_shrunk_covariance():
    """Tests ShrunkCovariance module on a simple dataset.

    """
    # compare shrunk covariance obtained from data and from MLE estimate
    cov = ShrunkCovariance(shrinkage=0.5)
    cov.fit(X)
    assert_array_almost_equal(
        shrunk_covariance(empirical_covariance(X), shrinkage=0.5),
        cov.covariance_, 4)

    # same test with shrinkage not provided
    cov = ShrunkCovariance()
    cov.fit(X)
    assert_array_almost_equal(
        shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4)

    # same test with shrinkage = 0 (<==> empirical_covariance)
    cov = ShrunkCovariance(shrinkage=0.)
    cov.fit(X)
    assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    cov = ShrunkCovariance(shrinkage=0.3)
    cov.fit(X_1d)
    assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    cov = ShrunkCovariance(shrinkage=0.5, store_precision=False)
    cov.fit(X)
    assert(cov.precision_ is None)


def test_ledoit_wolf():
    """Tests LedoitWolf module on a simple dataset.

    """
    # test shrinkage coeff on a simple data set
    lw = LedoitWolf()
    lw.fit(X, assume_centered=True)
    assert_almost_equal(lw.shrinkage_, 0.00192, 4)
    assert_almost_equal(lw.score(X, assume_centered=True), -2.89795, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X,
                                                        assume_centered=True)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    # compare estimates given by LW and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=lw.shrinkage_)
    scov.fit(X, assume_centered=True)
    assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    lw = LedoitWolf()
    lw.fit(X_1d, assume_centered=True)
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d,
                                                         assume_centered=True)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    lw = LedoitWolf(store_precision=False)
    lw.fit(X, assume_centered=True)
    assert_almost_equal(lw.score(X, assume_centered=True), -2.89795, 4)
    assert(lw.precision_ is None)

    # Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    lw = LedoitWolf()
    lw.fit(X)
    assert_almost_equal(lw.shrinkage_, 0.007582, 4)
    assert_almost_equal(lw.score(X), 2.243483, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    # compare estimates given by LW and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=lw.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    lw = LedoitWolf()
    lw.fit(X_1d)
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    lw = LedoitWolf(store_precision=False)
    lw.fit(X)
    assert_almost_equal(lw.score(X), 2.2434839, 4)
    assert(lw.precision_ is None)


def test_oas():
    """Tests OAS module on a simple dataset.

    """
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X, assume_centered=True)
    assert_almost_equal(oa.shrinkage_, 0.018740, 4)
    assert_almost_equal(oa.score(X, assume_centered=True), -5.03605, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X, assume_centered=True)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS()
    oa.fit(X_1d, assume_centered=True)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X, assume_centered=True)
    assert_almost_equal(oa.score(X, assume_centered=True), -5.03605, 4)
    assert(oa.precision_ is None)

    ### Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X)
    assert_almost_equal(oa.shrinkage_, 0.020236, 4)
    assert_almost_equal(oa.score(X), 2.079025, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS()
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X)
    assert_almost_equal(oa.score(X), 2.079025, 4)
    assert(oa.precision_ is None)