File: samples_generator.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (1197 lines) | stat: -rw-r--r-- 40,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
"""
Generate samples of synthetic data sets.
"""

# Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel,
#          G. Louppe
# License: BSD 3 clause

from itertools import product
import numpy as np
from scipy import linalg

from ..utils import array2d, check_random_state
from ..utils import shuffle as util_shuffle


def make_classification(n_samples=100, n_features=20, n_informative=2,
                        n_redundant=2, n_repeated=0, n_classes=2,
                        n_clusters_per_class=2, weights=None, flip_y=0.01,
                        class_sep=1.0, hypercube=True, shift=0.0, scale=1.0,
                        shuffle=True, random_state=None):
    """Generate a random n-class classification problem.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=20)
        The total number of features. These comprise `n_informative`
        informative features, `n_redundant` redundant features, `n_repeated`
        dupplicated features and `n_features-n_informative-n_redundant-
        n_repeated` useless features drawn at random.

    n_informative : int, optional (default=2)
        The number of informative features. Each class is composed of a number
        of gaussian clusters each located around the vertices of a hypercube
        in a subspace of dimension `n_informative`. For each cluster,
        informative features are drawn independently from  N(0, 1) and then
        randomly linearly combined in order to add covariance. The clusters
        are then placed on the vertices of the hypercube.

    n_redundant : int, optional (default=2)
        The number of redundant features. These features are generated as
        random linear combinations of the informative features.

    n_repeated : int, optional (default=2)
        The number of dupplicated features, drawn randomly from the informative
        and the redundant features.

    n_classes : int, optional (default=2)
        The number of classes (or labels) of the classification problem.

    n_clusters_per_class : int, optional (default=2)
        The number of clusters per class.

    weights : list of floats or None (default=None)
        The proportions of samples assigned to each class. If None, then
        classes are balanced. Note that if `len(weights) == n_classes - 1`,
        then the last class weight is automatically inferred.

    flip_y : float, optional (default=0.01)
        The fraction of samples whose class are randomly exchanged.

    class_sep : float, optional (default=1.0)
        The factor multiplying the hypercube dimension.

    hypercube : boolean, optional (default=True)
        If True, the clusters are put on the vertices of a hypercube. If
        False, the clusters are put on the vertices of a random polytope.

    shift : float or None, optional (default=0.0)
        Shift all features by the specified value. If None, then features
        are shifted by a random value drawn in [-class_sep, class_sep].

    scale : float or None, optional (default=1.0)
        Multiply all features by the specified value. If None, then features
        are scaled by a random value drawn in [1, 100]. Note that scaling
        happens after shifting.

    shuffle : boolean, optional (default=True)
        Shuffle the samples and the features.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The generated samples.

    y : array of shape [n_samples]
        The integer labels for class membership of each sample.

    Notes
    -----
    The algorithm is adapted from Guyon [1] and was designed to generate
    the "Madelon" dataset.

    References
    ----------

    .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable
           selection benchmark", 2003.
    """
    generator = check_random_state(random_state)

    # Count features, clusters and samples
    if n_informative + n_redundant + n_repeated > n_features:
        raise ValueError("Number of informative, redundant and repeated "
            "features must sum to less than the number of total features")
    if 2 ** n_informative < n_classes * n_clusters_per_class:
        raise ValueError("n_classes * n_clusters_per_class must"
            "be smaller or equal 2 ** n_informative")
    if weights and len(weights) not in [n_classes, n_classes - 1]:
        raise ValueError("Weights specified but incompatible with number "
                "of classes.")

    n_useless = n_features - n_informative - n_redundant - n_repeated
    n_clusters = n_classes * n_clusters_per_class

    if weights and len(weights) == (n_classes - 1):
        weights.append(1.0 - sum(weights))

    if weights is None:
        weights = [1.0 / n_classes] * n_classes
        weights[-1] = 1.0 - sum(weights[:-1])

    n_samples_per_cluster = []

    for k in xrange(n_clusters):
        n_samples_per_cluster.append(int(n_samples * weights[k % n_classes]
                                     / n_clusters_per_class))

    for i in xrange(n_samples - sum(n_samples_per_cluster)):
        n_samples_per_cluster[i % n_clusters] += 1

    # Intialize X and y
    X = np.zeros((n_samples, n_features))
    y = np.zeros(n_samples)

    # Build the polytope
    C = np.array(list(product([-class_sep, class_sep], repeat=n_informative)))

    if not hypercube:
        for k in xrange(n_clusters):
            C[k, :] *= generator.rand()

        for f in xrange(n_informative):
            C[:, f] *= generator.rand()

    generator.shuffle(C)

    # Loop over all clusters
    pos = 0
    pos_end = 0

    for k in xrange(n_clusters):
        # Number of samples in cluster k
        n_samples_k = n_samples_per_cluster[k]

        # Define the range of samples
        pos = pos_end
        pos_end = pos + n_samples_k

        # Assign labels
        y[pos:pos_end] = k % n_classes

        # Draw features at random
        X[pos:pos_end, :n_informative] = generator.randn(n_samples_k,
                                                         n_informative)

        # Multiply by a random matrix to create co-variance of the features
        A = 2 * generator.rand(n_informative, n_informative) - 1
        X[pos:pos_end, :n_informative] = np.dot(X[pos:pos_end, :n_informative],
                                                A)

        # Shift the cluster to a vertice
        X[pos:pos_end, :n_informative] += np.tile(C[k, :], (n_samples_k, 1))

    # Create redundant features
    if n_redundant > 0:
        B = 2 * generator.rand(n_informative, n_redundant) - 1
        X[:, n_informative:n_informative + n_redundant] = \
                                            np.dot(X[:, :n_informative], B)

    # Repeat some features
    if n_repeated > 0:
        n = n_informative + n_redundant
        indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.int)
        X[:, n:n + n_repeated] = X[:, indices]

    # Fill useless features
    X[:, n_features - n_useless:] = generator.randn(n_samples, n_useless)

    # Randomly flip labels
    if flip_y >= 0.0:
        for i in xrange(n_samples):
            if generator.rand() < flip_y:
                y[i] = generator.randint(n_classes)

    # Randomly shift and scale
    constant_shift = shift is not None
    constant_scale = scale is not None

    for f in xrange(n_features):
        if not constant_shift:
            shift = (2 * generator.rand() - 1) * class_sep

        if not constant_scale:
            scale = 1 + 100 * generator.rand()

        X[:, f] += shift
        X[:, f] *= scale

    # Randomly permute samples and features
    if shuffle:
        X, y = util_shuffle(X, y, random_state=generator)

        indices = range(n_features)
        generator.shuffle(indices)
        X[:, :] = X[:, indices]

    return X, y


def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5,
                                   n_labels=2, length=50,
                                   allow_unlabeled=True, random_state=None):
    """Generate a random multilabel classification problem.

    For each sample, the generative process is:
        - pick the number of labels: n ~ Poisson(n_labels)
        - n times, choose a class c: c ~ Multinomial(theta)
        - pick the document length: k ~ Poisson(length)
        - k times, choose a word: w ~ Multinomial(theta_c)

    In the above process, rejection sampling is used to make sure that
    n is never zero or more than `n_classes`, and that the document length
    is never zero. Likewise, we reject classes which have already been chosen.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=20)
        The total number of features.

    n_classes : int, optional (default=5)
        The number of classes of the classification problem.

    n_labels : int, optional (default=2)
        The average number of labels per instance. Number of labels follows
        a Poisson distribution that never takes the value 0.

    length : int, optional (default=50)
        Sum of the features (number of words if documents).

    allow_unlabeled : bool, optional (default=True)
        If ``True``, some instances might not belong to any class.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The generated samples.

    Y : list of tuples
        The label sets.
    """
    generator = check_random_state(random_state)
    p_c = generator.rand(n_classes)
    p_c /= p_c.sum()
    p_w_c = generator.rand(n_features, n_classes)
    p_w_c /= np.sum(p_w_c, axis=0)

    def sample_example():
        _, n_classes = p_w_c.shape

        # pick a nonzero number of labels per document by rejection sampling
        n = n_classes + 1
        while (not allow_unlabeled and n == 0) or n > n_classes:
            n = generator.poisson(n_labels)

        # pick n classes
        y = []
        while len(y) != n:
            # pick a class with probability P(c)
            c = generator.multinomial(1, p_c).argmax()

            if not c in y:
                y.append(c)

        # pick a non-zero document length by rejection sampling
        k = 0
        while k == 0:
            k = generator.poisson(length)

        # generate a document of length k words
        x = np.zeros(n_features, dtype=int)
        for i in range(k):
            if len(y) == 0:
                # if sample does not belong to any class, generate noise word
                w = generator.randint(n_features)
            else:
                # pick a class and generate an appropriate word
                c = y[generator.randint(len(y))]
                w = generator.multinomial(1, p_w_c[:, c]).argmax()
            x[w] += 1

        return x, y

    X, Y = zip(*[sample_example() for i in range(n_samples)])
    return np.array(X, dtype=np.float64), Y


def make_hastie_10_2(n_samples=12000, random_state=None):
    """Generates data for binary classification used in
    Hastie et al. 2009, Example 10.2.

    The ten features are standard independent Gaussian and
    the target ``y`` is defined by::

      y[i] = 1 if np.sum(X[i] > 9.34 else -1

    Parameters
    ----------
    n_samples : int, optional (default=12000)
        The number of samples.
    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, 10]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    **References**:

    .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical
    Learning Ed. 2", Springer, 2009.
    """
    rs = check_random_state(random_state)
    shape = (n_samples, 10)
    X = rs.normal(size=shape).reshape(shape)
    y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64)
    y[y == 0.0] = -1.0
    return X, y


def make_regression(n_samples=100, n_features=100, n_informative=10, bias=0.0,
                    effective_rank=None, tail_strength=0.5, noise=0.0,
                    shuffle=True, coef=False, random_state=None):
    """Generate a random regression problem.

    The input set can either be well conditioned (by default) or have a low
    rank-fat tail singular profile. See the `make_low_rank_matrix` for
    more details.

    The output is generated by applying a (potentially biased) random linear
    regression model with `n_informative` nonzero regressors to the previously
    generated input and some gaussian centered noise with some adjustable
    scale.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=100)
        The number of features.

    n_informative : int, optional (default=10)
        The number of informative features, i.e., the number of features used
        to build the linear model used to generate the output.

    bias : float, optional (default=0.0)
        The bias term in the underlying linear model.

    effective_rank : int or None, optional (default=None)
        if not None:
            The approximate number of singular vectors required to explain most
            of the input data by linear combinations. Using this kind of
            singular spectrum in the input allows the generator to reproduce
            the correlations often observed in practice.
        if None:
            The input set is well conditioned, centered and gaussian with
            unit variance.

    tail_strength : float between 0.0 and 1.0, optional (default=0.5)
        The relative importance of the fat noisy tail of the singular values
        profile if `effective_rank` is not None.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise applied to the output.

    shuffle : boolean, optional (default=True)
        Shuffle the samples and the features.

    coef : boolean, optional (default=False)
        If True, the coefficients of the underlying linear model are returned.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    coef : array of shape [n_features], optional
        The coefficient of the underlying linear model. It is returned only if
        coef is True.
    """
    generator = check_random_state(random_state)

    if effective_rank is None:
        # Randomly generate a well conditioned input set
        X = generator.randn(n_samples, n_features)

    else:
        # Randomly generate a low rank, fat tail input set
        X = make_low_rank_matrix(n_samples=n_samples,
                                 n_features=n_features,
                                 effective_rank=effective_rank,
                                 tail_strength=tail_strength,
                                 random_state=generator)

    # Generate a ground truth model with only n_informative features being non
    # zeros (the other features are not correlated to y and should be ignored
    # by a sparsifying regularizers such as L1 or elastic net)
    ground_truth = np.zeros(n_features)
    ground_truth[:n_informative] = 100 * generator.rand(n_informative)

    y = np.dot(X, ground_truth) + bias

    # Add noise
    if noise > 0.0:
        y += generator.normal(scale=noise, size=y.shape)

    # Randomly permute samples and features
    if shuffle:
        X, y = util_shuffle(X, y, random_state=generator)

        indices = range(n_features)
        generator.shuffle(indices)
        X[:, :] = X[:, indices]
        ground_truth = ground_truth[indices]

    if coef:
        return X, y, ground_truth

    else:
        return X, y


def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None,
        factor=.8):
    """Make a large circle containing a smaller circle in 2di

    A simple toy dataset to visualize clustering and classification
    algorithms.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The total number of points generated.

    shuffle: bool, optional (default=True)
        Whether to shuffle the samples.

    noise : double or None (default=None)
        Standard deviation of Gaussian noise added to the data.

    factor : double < 1 (default=.8)
        Scale factor between inner and outer circle.
    """

    if factor > 1 or factor < 0:
        raise ValueError("'factor' has to be between 0 and 1.")

    n_samples_out = int(n_samples / float(1 + factor))
    n_samples_in = n_samples - n_samples_out

    generator = check_random_state(random_state)

    # so as not to have the first point = last point, we add one and then
    # remove it.
    n_samples_out, n_samples_in = n_samples_out + 1, n_samples_in + 1
    outer_circ_x = np.cos(np.linspace(0, 2 * np.pi, n_samples_out)[:-1])
    outer_circ_y = np.sin(np.linspace(0, 2 * np.pi, n_samples_out)[:-1])
    inner_circ_x = np.cos(np.linspace(0, 2 * np.pi, n_samples_in)[:-1]) * factor
    inner_circ_y = np.sin(np.linspace(0, 2 * np.pi, n_samples_in)[:-1]) * factor

    X = np.vstack((np.append(outer_circ_x, inner_circ_x),\
           np.append(outer_circ_y, inner_circ_y))).T
    y = np.hstack([np.zeros(n_samples_out - 1), np.ones(n_samples_in - 1)])
    if shuffle:
        X, y = util_shuffle(X, y, random_state=generator)

    if not noise is None:
        X += generator.normal(scale=noise, size=X.shape)

    return X, y.astype(np.int)


def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None):
    """Make two interleaving half circles

    A simple toy dataset to visualize clustering and classification
    algorithms.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The total number of points generated.

    shuffle : bool, optional (default=True)
        Whether to shuffle the samples.

    noise : double or None (default=None)
        Standard deviation of Gaussian noise added to the data.

    """

    n_samples_out = n_samples / 2
    n_samples_in = n_samples - n_samples_out

    generator = check_random_state(random_state)

    outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out))
    outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out))
    inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in))
    inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5

    X = np.vstack((np.append(outer_circ_x, inner_circ_x),\
           np.append(outer_circ_y, inner_circ_y))).T
    y = np.hstack([np.zeros(n_samples_in), np.ones(n_samples_out)])

    if shuffle:
        X, y = util_shuffle(X, y, random_state=generator)

    if not noise is None:
        X += generator.normal(scale=noise, size=X.shape)

    return X, y.astype(np.int)


def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0,
               center_box=(-10.0, 10.0), shuffle=True, random_state=None):
    """Generate isotropic Gaussian blobs for clustering.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The total number of points equally divided among clusters.

    n_features : int, optional (default=2)
        The number of features for each sample.

    centers : int or array of shape [n_centers, n_features], optional
        (default=3)
        The number of centers to generate, or the fixed center locations.

    cluster_std: float or sequence of floats, optional (default=1.0)
        The standard deviation of the clusters.

    center_box: pair of floats (min, max), optional (default=(-10.0, 10.0))
        The bounding box for each cluster center when centers are
        generated at random.

    shuffle : boolean, optional (default=True)
        Shuffle the samples.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The generated samples.

    y : array of shape [n_samples]
        The integer labels for cluster membership of each sample.

    Examples
    --------
    >>> from sklearn.datasets.samples_generator import make_blobs
    >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2,
    ...                   random_state=0)
    >>> X.shape
    (10, 2)
    >>> y
    array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0])
    """
    generator = check_random_state(random_state)

    if isinstance(centers, int):
        centers = generator.uniform(center_box[0], center_box[1],
                                    size=(centers, n_features))
    else:
        centers = array2d(centers)
        n_features = centers.shape[1]

    X = []
    y = []

    n_centers = centers.shape[0]
    n_samples_per_center = [int(n_samples // n_centers)] * n_centers

    for i in xrange(n_samples % n_centers):
        n_samples_per_center[i] += 1

    for i, n in enumerate(n_samples_per_center):
        X.append(centers[i] + generator.normal(scale=cluster_std,
                                               size=(n, n_features)))
        y += [i] * n

    X = np.concatenate(X)
    y = np.array(y)

    if shuffle:
        indices = np.arange(n_samples)
        generator.shuffle(indices)
        X = X[indices]
        y = y[indices]

    return X, y


def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None):
    """Generate the "Friedman #1" regression problem

    This dataset is described in Friedman [1] and Breiman [2].

    Inputs `X` are independent features uniformly distributed on the interval
    [0, 1]. The output `y` is created according to the formula::

        y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \
+ 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1).

    Out of the `n_features` features, only 5 are actually used to compute
    `y`. The remaining features are independent of `y`.

    The number of features has to be >= 5.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=10)
        The number of features. Should be at least 5.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise applied to the output.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------

    .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals
           of Statistics 19 (1), pages 1-67, 1991.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning 24,
           pages 123-140, 1996.
    """
    if n_features < 5:
        raise ValueError("n_features must be at least five.")

    generator = check_random_state(random_state)

    X = generator.rand(n_samples, n_features)
    y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \
        + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples)

    return X, y


def make_friedman2(n_samples=100, noise=0.0, random_state=None):
    """Generate the "Friedman #2" regression problem

    This dataset is described in Friedman [1] and Breiman [2].

    Inputs `X` are 4 independent features uniformly distributed on the
    intervals::

        0 <= X[:, 0] <= 100,
        40 * pi <= X[:, 1] <= 560 * pi,
        0 <= X[:, 2] <= 1,
        1 <= X[:, 3] <= 11.

    The output `y` is created according to the formula::

        y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \
 - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1).

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise applied to the output.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, 4]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------

    .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals
           of Statistics 19 (1), pages 1-67, 1991.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning 24,
           pages 123-140, 1996.
    """
    generator = check_random_state(random_state)

    X = generator.rand(n_samples, 4)
    X[:, 0] *= 100
    X[:, 1] *= 520 * np.pi
    X[:, 1] += 40 * np.pi
    X[:, 3] *= 10
    X[:, 3] += 1

    y = (X[:, 0] ** 2
            + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \
        + noise * generator.randn(n_samples)

    return X, y


def make_friedman3(n_samples=100, noise=0.0, random_state=None):
    """Generate the "Friedman #3" regression problem

    This dataset is described in Friedman [1] and Breiman [2].

    Inputs `X` are 4 independent features uniformly distributed on the
    intervals::

        0 <= X[:, 0] <= 100,
        40 * pi <= X[:, 1] <= 560 * pi,
        0 <= X[:, 2] <= 1,
        1 <= X[:, 3] <= 11.

    The output `y` is created according to the formula::

        y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \
/ X[:, 0]) + noise * N(0, 1).

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise applied to the output.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, 4]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------

    .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals
           of Statistics 19 (1), pages 1-67, 1991.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning 24,
           pages 123-140, 1996.
    """
    generator = check_random_state(random_state)

    X = generator.rand(n_samples, 4)
    X[:, 0] *= 100
    X[:, 1] *= 520 * np.pi
    X[:, 1] += 40 * np.pi
    X[:, 3] *= 10
    X[:, 3] += 1

    y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \
        + noise * generator.randn(n_samples)

    return X, y


def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10,
                         tail_strength=0.5, random_state=None):
    """Generate a mostly low rank matrix with bell-shaped singular values

    Most of the variance can be explained by a bell-shaped curve of width
    effective_rank: the low rank part of the singular values profile is::

        (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2)

    The remaining singular values' tail is fat, decreasing as::

        tail_strength * exp(-0.1 * i / effective_rank).

    The low rank part of the profile can be considered the structured
    signal part of the data while the tail can be considered the noisy
    part of the data that cannot be summarized by a low number of linear
    components (singular vectors).

    This kind of singular profiles is often seen in practice, for instance:
     - gray level pictures of faces
     - TF-IDF vectors of text documents crawled from the web

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=100)
        The number of features.

    effective_rank : int, optional (default=10)
        The approximate number of singular vectors required to explain most of
        the data by linear combinations.

    tail_strength : float between 0.0 and 1.0, optional (default=0.5)
        The relative importance of the fat noisy tail of the singular values
        profile.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The matrix.
    """
    generator = check_random_state(random_state)
    n = min(n_samples, n_features)

    # Random (ortho normal) vectors
    from ..utils.fixes import qr_economic
    u, _ = qr_economic(generator.randn(n_samples, n))
    v, _ = qr_economic(generator.randn(n_features, n))

    # Index of the singular values
    singular_ind = np.arange(n, dtype=np.float64)

    # Build the singular profile by assembling signal and noise components
    low_rank = (1 - tail_strength) * \
               np.exp(-1.0 * (singular_ind / effective_rank) ** 2)
    tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank)
    s = np.identity(n) * (low_rank + tail)

    return np.dot(np.dot(u, s), v.T)


def make_sparse_coded_signal(n_samples, n_components, n_features,
                             n_nonzero_coefs, random_state=None):
    """Generate a signal as a sparse combination of dictionary elements.

    Returns a matrix Y = DX, such as D is (n_features, n_components),
    X is (n_components, n_samples) and each column of X has exactly
    n_nonzero_coefs non-zero elements.

    Parameters
    ----------
    n_samples : int
        number of samples to generate

    n_components:  int,
        number of components in the dictionary

    n_features : int
        number of features of the dataset to generate

    n_nonzero_coefs : int
        number of active (non-zero) coefficients in each sample

    random_state: int or RandomState instance, optional (default=None)
        seed used by the pseudo random number generator

    Returns
    -------
    data: array of shape [n_features, n_samples]
        The encoded signal (Y).

    dictionary: array of shape [n_features, n_components]
        The dictionary with normalized components (D).

    code: array of shape [n_components, n_samples]
        The sparse code such that each column of this matrix has exactly
        n_nonzero_coefs non-zero items (X).

    """
    generator = check_random_state(random_state)

    # generate dictionary
    D = generator.randn(n_features, n_components)
    D /= np.sqrt(np.sum((D ** 2), axis=0))

    # generate code
    X = np.zeros((n_components, n_samples))
    for i in xrange(n_samples):
        idx = np.arange(n_components)
        generator.shuffle(idx)
        idx = idx[:n_nonzero_coefs]
        X[idx, i] = generator.randn(n_nonzero_coefs)

    # encode signal
    Y = np.dot(D, X)

    return map(np.squeeze, (Y, D, X))


def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None):
    """Generate a random regression problem with sparse uncorrelated design

    This dataset is described in Celeux et al [1]. as::

        X ~ N(0, 1)
        y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]

    Only the first 4 features are informative. The remaining features are
    useless.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=10)
        The number of features.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------

    .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert,
           "Regularization in regression: comparing Bayesian and frequentist
           methods in a poorly informative situation", 2009.
    """
    generator = check_random_state(random_state)

    X = generator.normal(loc=0, scale=1, size=(n_samples, n_features))
    y = generator.normal(loc=(X[:, 0] +
                              2 * X[:, 1] -
                              2 * X[:, 2] -
                              1.5 * X[:, 3]), scale=np.ones(n_samples))

    return X, y


def make_spd_matrix(n_dim, random_state=None):
    """Generate a random symmetric, positive-definite matrix.

    Parameters
    ----------
    n_dim : int
        The matrix dimension.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_dim, n_dim]
        The random symmetric, positive-definite matrix.
    """
    generator = check_random_state(random_state)

    A = generator.rand(n_dim, n_dim)
    U, s, V = linalg.svd(np.dot(A.T, A))
    X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V)

    return X


def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False,
                           smallest_coef=.1, largest_coef=.9,
                           random_state=None):
    """Generate a sparse symetric definite positive matrix.

    Parameters
    ----------
    dim: integer, optional (default=1)
        The size of the random  (matrix to generate.

    alpha: float between 0 and 1, optional (default=0.95)
        The probability that a coefficient is non zero (see notes).

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    prec: array of shape = [dim, dim]

    Notes
    -----
    The sparsity is actually imposed on the cholesky factor of the matrix.
    Thus alpha does not translate directly into the filling fraction of
    the matrix itself.
    """
    random_state = check_random_state(random_state)

    chol = -np.eye(dim)
    aux = random_state.rand(dim, dim)
    aux[aux < alpha] = 0
    aux[aux > alpha] = (smallest_coef
                        + (largest_coef - smallest_coef)
                          * random_state.rand(np.sum(aux > alpha)))
    aux = np.tril(aux, k=-1)

    # Permute the lines: we don't want to have assymetries in the final
    # SPD matrix
    permutation = random_state.permutation(dim)
    aux = aux[permutation].T[permutation]
    chol += aux
    prec = np.dot(chol.T, chol)

    if norm_diag:
        d = np.diag(prec)
        d = 1. / np.sqrt(d)
        prec *= d
        prec *= d[:, np.newaxis]

    return prec


def make_swiss_roll(n_samples=100, noise=0.0, random_state=None):
    """Generate a swiss roll dataset.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of sample points on the S curve.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, 3]
        The points.

    t : array of shape [n_samples]
        The univariate position of the sample according to the main dimension
        of the points in the manifold.

    Notes
    -----
    The algorithm is from Marsland [1].

    References
    ----------

    .. [1] S. Marsland, "Machine Learning: An Algorithmic Perpsective",
           Chapter 10, 2009.
           http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py
    """
    generator = check_random_state(random_state)

    t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples))
    x = t * np.cos(t)
    y = 21 * generator.rand(1, n_samples)
    z = t * np.sin(t)

    X = np.concatenate((x, y, z))
    X += noise * generator.randn(3, n_samples)
    X = X.T
    t = np.squeeze(t)

    return X, t


def make_s_curve(n_samples=100, noise=0.0, random_state=None):
    """Generate an S curve dataset.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of sample points on the S curve.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    X : array of shape [n_samples, 3]
        The points.

    t : array of shape [n_samples]
        The univariate position of the sample according to the main dimension
        of the points in the manifold.
    """
    generator = check_random_state(random_state)

    t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5)
    x = np.sin(t)
    y = 2.0 * generator.rand(1, n_samples)
    z = np.sign(t) * (np.cos(t) - 1)

    X = np.concatenate((x, y, z))
    X += noise * generator.randn(3, n_samples)
    X = X.T
    t = np.squeeze(t)

    return X, t