1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
"""Matrix factorization with Sparse PCA"""
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD
import numpy as np
from ..utils import check_random_state
from ..linear_model import ridge_regression
from ..base import BaseEstimator, TransformerMixin
from .dict_learning import dict_learning, dict_learning_online
class SparsePCA(BaseEstimator, TransformerMixin):
"""Sparse Principal Components Analysis (SparsePCA)
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Parameters
----------
n_components : int,
Number of sparse atoms to extract.
alpha : float,
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float,
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
max_iter : int,
Maximum number of iterations to perform.
tol : float,
Tolerance for the stopping condition.
method : {'lars', 'cd'}
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
n_jobs : int,
Number of parallel jobs to run.
U_init : array of shape (n_samples, n_atoms),
Initial values for the loadings for warm restart scenarios.
V_init : array of shape (n_atoms, n_features),
Initial values for the components for warm restart scenarios.
verbose :
Degree of verbosity of the printed output.
random_state : int or RandomState
Pseudo number generator state used for random sampling.
Attributes
----------
`components_` : array, [n_components, n_features]
Sparse components extracted from the data.
`error_` : array
Vector of errors at each iteration.
See also
--------
PCA
MiniBatchSparsePCA
DictionaryLearning
"""
def __init__(self, n_components, alpha=1, ridge_alpha=0.01, max_iter=1000,
tol=1e-8, method='lars', n_jobs=1, U_init=None,
V_init=None, verbose=False, random_state=None):
self.n_components = n_components
self.alpha = alpha
self.ridge_alpha = ridge_alpha
self.max_iter = max_iter
self.tol = tol
self.method = method
self.n_jobs = n_jobs
self.U_init = U_init
self.V_init = V_init
self.verbose = verbose
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
self.random_state = check_random_state(self.random_state)
X = np.asarray(X)
code_init = self.V_init.T if self.V_init is not None else None
dict_init = self.U_init.T if self.U_init is not None else None
Vt, _, E = dict_learning(X.T, self.n_components, self.alpha,
tol=self.tol, max_iter=self.max_iter,
method=self.method, n_jobs=self.n_jobs,
verbose=self.verbose,
random_state=self.random_state,
code_init=code_init,
dict_init=dict_init)
self.components_ = Vt.T
self.error_ = E
return self
def transform(self, X, ridge_alpha=None):
"""Least Squares projection of the data onto the sparse components.
To avoid instability issues in case the system is under-determined,
regularization can be applied (Ridge regression) via the
`ridge_alpha` parameter.
Note that Sparse PCA components orthogonality is not enforced as in PCA
hence one cannot use a simple linear projection.
Parameters
----------
X: array of shape (n_samples, n_features)
Test data to be transformed, must have the same number of
features as the data used to train the model.
ridge_alpha: float, default: 0.01
Amount of ridge shrinkage to apply in order to improve
conditioning.
Returns
-------
X_new array, shape (n_samples, n_components)
Transformed data.
"""
ridge_alpha = self.ridge_alpha if ridge_alpha is None else ridge_alpha
U = ridge_regression(self.components_.T, X.T, ridge_alpha,
solver='dense_cholesky')
s = np.sqrt((U ** 2).sum(axis=0))
s[s == 0] = 1
U /= s
return U
class MiniBatchSparsePCA(SparsePCA):
"""Mini-batch Sparse Principal Components Analysis
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Parameters
----------
n_components : int,
number of sparse atoms to extract
alpha : int,
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float,
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
n_iter : int,
number of iterations to perform for each mini batch
callback : callable,
callable that gets invoked every five iterations
chunk_size : int,
the number of features to take in each mini batch
verbose :
degree of output the procedure will print
shuffle : boolean,
whether to shuffle the data before splitting it in batches
n_jobs : int,
number of parallel jobs to run, or -1 to autodetect.
method : {'lars', 'cd'}
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
random_state : int or RandomState
Pseudo number generator state used for random sampling.
Attributes
----------
`components_` : array, [n_components, n_features]
Sparse components extracted from the data.
`error_` : array
Vector of errors at each iteration.
See also
--------
PCA
SparsePCA
DictionaryLearning
"""
def __init__(self, n_components, alpha=1, ridge_alpha=0.01, n_iter=100,
callback=None, chunk_size=3, verbose=False, shuffle=True,
n_jobs=1, method='lars', random_state=None):
self.n_components = n_components
self.alpha = alpha
self.ridge_alpha = ridge_alpha
self.n_iter = n_iter
self.callback = callback
self.chunk_size = chunk_size
self.verbose = verbose
self.shuffle = shuffle
self.n_jobs = n_jobs
self.method = method
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
self.random_state = check_random_state(self.random_state)
X = np.asarray(X)
Vt, _ = dict_learning_online(X.T, self.n_components, alpha=self.alpha,
n_iter=self.n_iter, return_code=True,
dict_init=None, verbose=self.verbose,
callback=self.callback,
chunk_size=self.chunk_size,
shuffle=self.shuffle,
n_jobs=self.n_jobs, method=self.method,
random_state=self.random_state)
self.components_ = Vt.T
return self
|