1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
"""Gradient Boosting methods
This module contains methods for fitting gradient boosted regression trees for
both classification and regression.
The module structure is the following:
- The ``BaseGradientBoosting`` base class implements a common ``fit`` method
for all the estimators in the module. Regression and classification
only differ the the concrete ``LossFunction`` used.
- ``GradientBoostingClassifier`` implements gradient boosting for
classification problems.
- ``GradientBoostingRegressor`` implements gradient boosting for
classification problems.
"""
# Authors: Peter Prettenhofer, Scott White, Gilles Louppe
# License: BSD Style.
from __future__ import division
from abc import ABCMeta, abstractmethod
import numpy as np
from .base import BaseEnsemble
from ..base import ClassifierMixin
from ..base import RegressorMixin
from ..utils import check_random_state
from ..tree.tree import Tree
from ..tree._tree import _find_best_split
from ..tree._tree import _random_sample_mask
from ..tree._tree import _apply_tree
from ..tree._tree import MSE
from ..tree._tree import DTYPE
from ._gradient_boosting import predict_stages
from ._gradient_boosting import predict_stage
__all__ = ["GradientBoostingClassifier",
"GradientBoostingRegressor"]
class MedianEstimator(object):
"""An estimator predicting the median of the training targets."""
def fit(self, X, y):
self.median = np.median(y)
def predict(self, X):
y = np.empty((X.shape[0], 1), dtype=np.float64)
y.fill(self.median)
return y
class MeanEstimator(object):
"""An estimator predicting the mean of the training targets."""
def fit(self, X, y):
self.mean = np.mean(y)
def predict(self, X):
y = np.empty((X.shape[0], 1), dtype=np.float64)
y.fill(self.mean)
return y
class LogOddsEstimator(object):
"""An estimator predicting the log odds ratio."""
def fit(self, X, y):
n_pos = np.sum(y)
self.prior = np.log(n_pos / (y.shape[0] - n_pos))
def predict(self, X):
y = np.empty((X.shape[0], 1), dtype=np.float64)
y.fill(self.prior)
return y
class PriorProbabilityEstimator(object):
"""An estimator predicting the probability of each
class in the training data.
"""
def fit(self, X, y):
class_counts = np.bincount(y)
self.priors = class_counts / float(y.shape[0])
def predict(self, X):
y = np.empty((X.shape[0], self.priors.shape[0]), dtype=np.float64)
y[:] = self.priors
return y
class LossFunction(object):
"""Abstract base class for various loss functions.
Attributes
----------
K : int
The number of regression trees to be induced;
1 for regression and binary classification;
``n_classes`` for multi-class classification.
"""
__metaclass__ = ABCMeta
is_multi_class = False
def __init__(self, n_classes):
self.K = n_classes
def init_estimator(self, X, y):
raise NotImplementedError()
@abstractmethod
def __call__(self, y, pred):
"""Compute the loss of prediction ``pred`` and ``y``. """
@abstractmethod
def negative_gradient(self, y, y_pred, **kargs):
"""Compute the negative gradient.
Parameters
---------
y : np.ndarray, shape=(n,)
The target labels.
y_pred : np.ndarray, shape=(n,):
The predictions.
"""
def update_terminal_regions(self, tree, X, y, residual, y_pred,
sample_mask, learn_rate=1.0, k=0):
"""Update the terminal regions (=leaves) of the given tree and
updates the current predictions of the model. Traverses tree
and invokes template method `_update_terminal_region`.
Parameters
----------
tree : tree.Tree
The tree object.
X : np.ndarray, shape=(n, m)
The data array.
y : np.ndarray, shape=(n,)
The target labels.
residual : np.ndarray, shape=(n,)
The residuals (usually the negative gradient).
y_pred : np.ndarray, shape=(n,):
The predictions.
"""
# compute leaf for each sample in ``X``.
terminal_regions = np.empty((X.shape[0], ), dtype=np.int32)
_apply_tree(X, tree.children, tree.feature, tree.threshold,
terminal_regions)
# mask all which are not in sample mask.
masked_terminal_regions = terminal_regions.copy()
masked_terminal_regions[~sample_mask] = -1
# update each leaf (= perform line search)
for leaf in np.where(tree.children[:, 0] == Tree.LEAF)[0]:
self._update_terminal_region(tree, masked_terminal_regions,
leaf, X, y, residual,
y_pred[:, k])
# update predictions (both in-bag and out-of-bag)
y_pred[:, k] += learn_rate * tree.value[:, 0].take(terminal_regions,
axis=0)
@abstractmethod
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, pred):
"""Template method for updating terminal regions (=leaves). """
class RegressionLossFunction(LossFunction):
"""Base class for regression loss functions. """
__metaclass__ = ABCMeta
def __init__(self, n_classes):
if n_classes != 1:
raise ValueError("``n_classes`` must be 1 for regression")
super(RegressionLossFunction, self).__init__(n_classes)
class LeastSquaresError(RegressionLossFunction):
"""Loss function for least squares (LS) estimation.
Terminal regions need not to be updated for least squares. """
def init_estimator(self):
return MeanEstimator()
def __call__(self, y, pred):
return np.mean((y - pred.ravel()) ** 2.0)
def negative_gradient(self, y, pred, **kargs):
return y - pred.ravel()
def update_terminal_regions(self, tree, X, y, residual, y_pred,
sample_mask, learn_rate=1.0, k=0):
"""Least squares does not need to update terminal regions.
But it has to update the predictions.
"""
# update predictions
y_pred[:, k] += learn_rate * tree.predict(X).ravel()
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, pred):
pass
class LeastAbsoluteError(RegressionLossFunction):
"""Loss function for least absolute deviation (LAD) regression. """
def init_estimator(self):
return MedianEstimator()
def __call__(self, y, pred):
return np.abs(y - pred.ravel()).mean()
def negative_gradient(self, y, pred, **kargs):
return np.sign(y - pred.ravel())
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, pred):
"""LAD updates terminal regions to median estimates. """
terminal_region = np.where(terminal_regions == leaf)[0]
tree.value[leaf, 0] = np.median(y.take(terminal_region, axis=0) - \
pred.take(terminal_region, axis=0))
class BinomialDeviance(LossFunction):
"""Binomial deviance loss function for binary classification.
Binary classification is a special case; here, we only need to
fit one tree instead of ``n_classes`` trees.
"""
def __init__(self, n_classes):
if n_classes != 2:
raise ValueError("%s requires 2 classes." %
self.__class__.__name__)
# we only need to fit one tree for binary clf.
super(BinomialDeviance, self).__init__(1)
def init_estimator(self):
return LogOddsEstimator()
def __call__(self, y, pred):
"""Compute the deviance (= negative log-likelihood). """
# logaddexp(0, v) == log(1.0 + exp(v))
pred = pred.ravel()
return np.sum(np.logaddexp(0.0, -2 * y * pred)) / y.shape[0]
def negative_gradient(self, y, pred, **kargs):
return y - 1.0 / (1.0 + np.exp(-pred.ravel()))
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, pred):
"""Make a single Newton-Raphson step. """
terminal_region = np.where(terminal_regions == leaf)[0]
residual = residual.take(terminal_region, axis=0)
y = y.take(terminal_region, axis=0)
numerator = residual.sum()
denominator = np.sum((y - residual) * (1 - y + residual))
if denominator == 0.0:
tree.value[leaf, 0] = 0.0
else:
tree.value[leaf, 0] = numerator / denominator
class MultinomialDeviance(LossFunction):
"""Multinomial deviance loss function for multi-class classification.
For multi-class classification we need to fit ``n_classes`` trees at
each stage.
"""
is_multi_class = True
def __init__(self, n_classes):
if n_classes < 3:
raise ValueError("%s requires more than 2 classes."
% self.__class__.__name__)
super(MultinomialDeviance, self).__init__(n_classes)
def init_estimator(self):
return PriorProbabilityEstimator()
def __call__(self, y, pred):
# create one-hot label encoding
Y = np.zeros((y.shape[0], self.K), dtype=np.float64)
for k in range(self.K):
Y[:, k] = y == k
return np.sum(-1 * (Y * pred).sum(axis=1) +
np.log(np.exp(pred).sum(axis=1)))
def negative_gradient(self, y, pred, k=0):
"""Compute negative gradient for the ``k``-th class. """
return y - np.exp(pred[:, k]) / np.sum(np.exp(pred), axis=1)
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, pred):
"""Make a single Newton-Raphson step. """
terminal_region = np.where(terminal_regions == leaf)[0]
residual = residual.take(terminal_region, axis=0)
y = y.take(terminal_region, axis=0)
numerator = residual.sum()
numerator *= (self.K - 1) / self.K
denominator = np.sum((y - residual) * (1.0 - y + residual))
if denominator == 0.0:
tree.value[leaf, 0] = 0.0
else:
tree.value[leaf, 0] = numerator / denominator
LOSS_FUNCTIONS = {'ls': LeastSquaresError,
'lad': LeastAbsoluteError,
'bdeviance': BinomialDeviance,
'mdeviance': MultinomialDeviance,
'deviance': None} # for both, multinomial and binomial
class BaseGradientBoosting(BaseEnsemble):
"""Abstract base class for Gradient Boosting. """
def __init__(self, loss, learn_rate, n_estimators, min_samples_split,
min_samples_leaf, max_depth, init, subsample, random_state):
if n_estimators <= 0:
raise ValueError("n_estimators must be greater than 0")
self.n_estimators = n_estimators
if learn_rate <= 0.0:
raise ValueError("learn_rate must be greater than 0")
self.learn_rate = learn_rate
if loss not in LOSS_FUNCTIONS:
raise ValueError("Loss '%s' not supported. " % loss)
self.loss = loss
if min_samples_split <= 0:
raise ValueError("min_samples_split must be larger than 0.")
self.min_samples_split = min_samples_split
if min_samples_leaf <= 0:
raise ValueError("min_samples_leaf must be larger than 0.")
self.min_samples_leaf = min_samples_leaf
if subsample <= 0.0 or subsample > 1:
raise ValueError("subsample must be in (0,1]")
self.subsample = subsample
if max_depth <= 0:
raise ValueError("max_depth must be larger than 0.")
self.max_depth = max_depth
if init is not None:
if not hasattr(init, 'fit') or not hasattr(init, 'predict'):
raise ValueError("init must be valid estimator")
self.init = init
self.random_state = check_random_state(random_state)
self.estimators_ = None
def fit_stage(self, i, X, X_argsorted, y, y_pred, sample_mask):
"""Fit another stage of ``n_classes_`` trees to the boosting model. """
loss = self.loss_
original_y = y
for k in range(loss.K):
if loss.is_multi_class:
y = np.array(original_y == k, dtype=np.float64)
residual = loss.negative_gradient(y, y_pred, k=k)
# induce regression tree on residuals
tree = Tree(1, self.n_features)
tree.build(X, residual, MSE(), self.max_depth,
self.min_samples_split, self.min_samples_leaf, 0.0,
self.n_features, self.random_state, _find_best_split,
sample_mask, X_argsorted)
# update tree leaves
self.loss_.update_terminal_regions(tree, X, y, residual, y_pred,
sample_mask, self.learn_rate,
k=k)
# add tree to ensemble
self.estimators_[i, k] = tree
return y_pred
def fit(self, X, y):
"""Fit the gradient boosting model.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features. Use fortran-style
to avoid memory copies.
y : array-like, shape = [n_samples]
Target values (integers in classification, real numbers in
regression)
For classification, labels must correspond to classes
``0, 1, ..., n_classes_-1``
Returns
-------
self : object
Returns self.
"""
X = np.asfortranarray(X, dtype=DTYPE)
y = np.ascontiguousarray(y)
n_samples, n_features = X.shape
if y.shape[0] != n_samples:
raise ValueError("Number of labels does not match " \
"number of samples.")
self.n_features = n_features
loss = LOSS_FUNCTIONS[self.loss](self.n_classes_)
# store loss object for future use
self.loss_ = loss
if self.init is None:
self.init = loss.init_estimator()
# create argsorted X for fast tree induction
X_argsorted = np.asfortranarray(
np.argsort(X.T, axis=1).astype(np.int32).T)
# fit initial model
self.init.fit(X, y)
# init predictions
y_pred = self.init.predict(X)
self.estimators_ = np.empty((self.n_estimators, loss.K),
dtype=np.object)
self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64)
self.oob_score_ = np.zeros((self.n_estimators), dtype=np.float64)
sample_mask = np.ones((n_samples,), dtype=np.bool)
n_inbag = max(1, int(self.subsample * n_samples))
# perform boosting iterations
for i in range(self.n_estimators):
# subsampling
if self.subsample < 1.0:
# TODO replace with ``np.choice`` if possible.
sample_mask = _random_sample_mask(n_samples, n_inbag,
self.random_state)
# fit next stage of trees
y_pred = self.fit_stage(i, X, X_argsorted, y, y_pred, sample_mask)
# track deviance (= loss)
if self.subsample < 1.0:
self.train_score_[i] = loss(y[sample_mask],
y_pred[sample_mask])
self.oob_score_[i] = loss(y[~sample_mask],
y_pred[~sample_mask])
else:
# no need to fancy index w/ no subsampling
self.train_score_[i] = loss(y, y_pred)
return self
def _make_estimator(self, append=True):
# we don't need _make_estimator
raise NotImplementedError()
@property
def feature_importances_(self):
if self.estimators_ is None or len(self.estimators_) == 0:
raise ValueError("Estimator not fitted, " \
"call `fit` before `feature_importances_`.")
total_sum = np.zeros((self.n_features, ), dtype=np.float64)
for stage in self.estimators_:
stage_sum = sum(tree.compute_feature_importances(method='squared')
for tree in stage) / len(stage)
total_sum += stage_sum
importances = total_sum / len(self.estimators_)
return importances
def staged_decision_function(self, X):
"""Compute decision function for X.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : array-like of shape = [n_samples, n_features]
The input samples.
Returns
-------
f : array of shape = [n_samples, n_classes]
The decision function of the input samples. Classes are
ordered by arithmetical order. Regression and binary
classification are special cases with ``n_classes == 1``.
"""
X = np.atleast_2d(X)
X = X.astype(DTYPE)
if self.estimators_ is None or len(self.estimators_) == 0:
raise ValueError("Estimator not fitted, call `fit` " \
"before `staged_decision_function`.")
if X.shape[1] != self.n_features:
raise ValueError("X.shape[1] should be %d, not %d." %
(self.n_features, X.shape[1]))
score = self.init.predict(X).astype(np.float64)
for i in range(self.n_estimators):
predict_stage(self.estimators_, i, X, self.learn_rate, score)
yield score
class GradientBoostingClassifier(BaseGradientBoosting, ClassifierMixin):
"""Gradient Boosting for classification.
GB builds an additive model in a
forward stage-wise fashion; it allows for the optimization of
arbitrary differentiable loss functions. In each stage ``n_classes_``
regression trees are fit on the negative gradient of the
binomial or multinomial deviance loss function. Binary classification
is a special case where only a single regression tree is induced.
Parameters
----------
loss : {'deviance', 'ls'}, optional (default='deviance')
loss function to be optimized. 'deviance' refers to
deviance (= logistic regression) for classification
with probabilistic outputs. 'ls' refers to least squares
regression.
learn_rate : float, optional (default=0.1)
learning rate shrinks the contribution of each tree by `learn_rate`.
There is a trade-off between learn_rate and n_estimators.
n_estimators : int (default=100)
The number of boosting stages to perform. Gradient boosting
is fairly robust to over-fitting so a large number usually
results in better performance.
max_depth : integer, optional (default=3)
maximum depth of the individual regression estimators. The maximum
depth limits the number of nodes in the tree. Tune this parameter
for best performance; the best value depends on the interaction
of the input variables.
min_samples_split : integer, optional (default=1)
The minimum number of samples required to split an internal node.
min_samples_leaf : integer, optional (default=1)
The minimum number of samples required to be at a leaf node.
subsample : float, optional (default=1.0)
The fraction of samples to be used for fitting the individual base
learners. If smaller than 1.0 this results in Stochastic Gradient
Boosting. `subsample` interacts with the parameter `n_estimators`.
Examples
--------
>>> samples = [[0, 0, 2], [1, 0, 0]]
>>> labels = [0, 1]
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gb = GradientBoostingClassifier().fit(samples, labels)
>>> print gb.predict([[0.5, 0, 0]])
[0]
See also
--------
sklearn.tree.DecisionTreeClassifier, RandomForestClassifier
References
----------
J. Friedman, Greedy Function Approximation: A Gradient Boosting
Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
J. Friedman, Stochastic Gradient Boosting, 1999
T. Hastie, R. Tibshirani and J. Friedman.
Elements of Statistical Learning Ed. 2, Springer, 2009.
"""
def __init__(self, loss='deviance', learn_rate=0.1, n_estimators=100,
subsample=1.0, min_samples_split=1, min_samples_leaf=1,
max_depth=3, init=None, random_state=None):
super(GradientBoostingClassifier, self).__init__(
loss, learn_rate, n_estimators, min_samples_split,
min_samples_leaf, max_depth, init, subsample, random_state)
def fit(self, X, y):
"""Fit the gradient boosting model.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features. Use fortran-style
to avoid memory copies.
y : array-like, shape = [n_samples]
Target values (integers in classification, real numbers in
regression)
For classification, labels must correspond to classes
``0, 1, ..., n_classes_-1``
Returns
-------
self : object
Returns self.
"""
self.classes_ = np.unique(y)
self.n_classes_ = len(self.classes_)
y = np.searchsorted(self.classes_, y)
if self.loss == 'deviance':
self.loss = 'mdeviance' if len(self.classes_) > 2 else 'bdeviance'
return super(GradientBoostingClassifier, self).fit(X, y)
def predict(self, X):
"""Predict class for X.
Parameters
----------
X : array-like of shape = [n_samples, n_features]
The input samples.
Returns
-------
y : array of shape = [n_samples]
The predicted classes.
"""
probas = self.predict_proba(X)
return self.classes_.take(np.argmax(probas, axis=1), axis=0)
def predict_proba(self, X):
"""Predict class probabilities for X.
Parameters
----------
X : array-like of shape = [n_samples, n_features]
The input samples.
Returns
-------
p : array of shape = [n_samples]
The class probabilities of the input samples. Classes are
ordered by arithmetical order.
"""
X = np.atleast_2d(X)
X = X.astype(DTYPE)
if self.estimators_ is None or len(self.estimators_) == 0:
raise ValueError("Estimator not fitted, " \
"call `fit` before `predict_proba`.")
if X.shape[1] != self.n_features:
raise ValueError("X.shape[1] should be %d, not %d." %
(self.n_features, X.shape[1]))
proba = np.ones((X.shape[0], self.n_classes_), dtype=np.float64)
score = self.init.predict(X).astype(np.float64)
predict_stages(self.estimators_, X, self.learn_rate, score)
if not self.loss_.is_multi_class:
proba[:, 1] = 1.0 / (1.0 + np.exp(-score.ravel()))
proba[:, 0] -= proba[:, 1]
else:
proba = np.exp(score) / np.sum(np.exp(score), axis=1)[:, np.newaxis]
return proba
class GradientBoostingRegressor(BaseGradientBoosting, RegressorMixin):
"""Gradient Boosting for regression.
GB builds an additive model in a forward stage-wise fashion;
it allows for the optimization of arbitrary differentiable loss functions.
In each stage a regression tree is fit on the negative gradient of the
given loss function.
Parameters
----------
loss : {'ls', 'lad'}, optional (default='ls')
loss function to be optimized. 'ls' refers to least squares
regression. 'lad' (least absolute deviation) is a highly robust
loss function soley based on order information of the input
variables.
learn_rate : float, optional (default=0.1)
learning rate shrinks the contribution of each tree by `learn_rate`.
There is a trade-off between learn_rate and n_estimators.
n_estimators : int (default=100)
The number of boosting stages to perform. Gradient boosting
is fairly robust to over-fitting so a large number usually
results in better performance.
max_depth : integer, optional (default=3)
maximum depth of the individual regression estimators. The maximum
depth limits the number of nodes in the tree. Tune this parameter
for best performance; the best value depends on the interaction
of the input variables.
min_samples_split : integer, optional (default=1)
The minimum number of samples required to split an internal node.
min_samples_leaf : integer, optional (default=1)
The minimum number of samples required to be at a leaf node.
subsample : float, optional (default=1.0)
The fraction of samples to be used for fitting the individual base
learners. If smaller than 1.0 this results in Stochastic Gradient
Boosting. `subsample` interacts with the parameter `n_estimators`.
Attributes
----------
`feature_importances_` : array, shape = [n_features]
The feature importances (the higher, the more important the feature).
`oob_score_` : array, shape = [n_estimators]
Score of the training dataset obtained using an out-of-bag estimate.
The i-th score ``oob_score_[i]`` is the deviance (= loss) of the
model at iteration ``i`` on the out-of-bag sample.
`train_score_` : array, shape = [n_estimators]
The i-th score ``train_score_[i]`` is the deviance (= loss) of the
model at iteration ``i`` on the in-bag sample.
If ``subsample == 1`` this is the deviance on the training data.
Attributes
----------
`feature_importances_` : array, shape = [n_features]
The feature importances (the higher, the more important the feature).
`oob_score_` : array, shape = [n_estimators]
Score of the training dataset obtained using an out-of-bag estimate.
The i-th score ``oob_score_[i]`` is the deviance (= loss) of the
model at iteration ``i`` on the out-of-bag sample.
`train_score_` : array, shape = [n_estimators]
The i-th score ``train_score_[i]`` is the deviance (= loss) of the
model at iteration ``i`` on the in-bag sample.
If ``subsample == 1`` this is the deviance on the training data.
Examples
--------
>>> samples = [[0, 0, 2], [1, 0, 0]]
>>> labels = [0, 1]
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> gb = GradientBoostingRegressor().fit(samples, labels)
>>> print gb.predict([[0, 0, 0]]) # doctest: +ELLIPSIS
[ 1.32806997e-05]
See also
--------
sklearn.tree.DecisionTreeRegressor, RandomForestRegressor
References
----------
J. Friedman, Greedy Function Approximation: A Gradient Boosting
Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
J. Friedman, Stochastic Gradient Boosting, 1999
T. Hastie, R. Tibshirani and J. Friedman.
Elements of Statistical Learning Ed. 2, Springer, 2009.
"""
def __init__(self, loss='ls', learn_rate=0.1, n_estimators=100,
subsample=1.0, min_samples_split=1, min_samples_leaf=1,
max_depth=3, init=None, random_state=None):
super(GradientBoostingRegressor, self).__init__(
loss, learn_rate, n_estimators, min_samples_split,
min_samples_leaf, max_depth, init, subsample, random_state)
def fit(self, X, y):
"""Fit the gradient boosting model.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features. Use fortran-style
to avoid memory copies.
y : array-like, shape = [n_samples]
Target values (integers in classification, real numbers in
regression)
For classification, labels must correspond to classes
``0, 1, ..., n_classes_-1``
Returns
-------
self : object
Returns self.
"""
self.n_classes_ = 1
return super(GradientBoostingRegressor, self).fit(X, y)
def predict(self, X):
"""Predict regression target for X.
Parameters
----------
X : array-like of shape = [n_samples, n_features]
The input samples.
Returns
-------
y: array of shape = [n_samples]
The predicted values.
"""
X = np.atleast_2d(X)
X = X.astype(DTYPE)
if self.estimators_ is None or len(self.estimators_) == 0:
raise ValueError("Estimator not fitted, " \
"call `fit` before `predict`.")
if X.shape[1] != self.n_features:
raise ValueError("X.shape[1] should be %d, not %d." %
(self.n_features, X.shape[1]))
y = self.init.predict(X).astype(np.float64)
predict_stages(self.estimators_, X, self.learn_rate, y)
return y.ravel()
def staged_predict(self, X):
"""Predict regression target at each stage for X.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : array-like of shape = [n_samples, n_features]
The input samples.
Returns
-------
y : array of shape = [n_samples]
The predicted value of the input samples.
"""
for y in self.staged_decision_function(X):
yield y.ravel()
|