1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
"""
Testing for the forest module (sklearn.ensemble.forest).
"""
# Authors: Gilles Louppe, Brian Holt
# License: BSD 3
import numpy as np
from numpy.testing import assert_array_equal
from numpy.testing import assert_array_almost_equal
from numpy.testing import assert_equal
from numpy.testing import assert_almost_equal
from nose.tools import assert_true
from sklearn.utils.testing import assert_less, assert_greater
from sklearn.grid_search import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import ExtraTreesRegressor
from sklearn import datasets
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]
# also load the iris dataset
# and randomly permute it
iris = datasets.load_iris()
rng = np.random.RandomState(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
# also load the boston dataset
# and randomly permute it
boston = datasets.load_boston()
perm = rng.permutation(boston.target.size)
boston.data = boston.data[perm]
boston.target = boston.target[perm]
def test_classification_toy():
"""Check classification on a toy dataset."""
# Random forest
clf = RandomForestClassifier(n_estimators=10, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(10, len(clf))
clf = RandomForestClassifier(n_estimators=10, max_features=1,
random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(10, len(clf))
# Extra-trees
clf = ExtraTreesClassifier(n_estimators=10, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(10, len(clf))
clf = ExtraTreesClassifier(n_estimators=10, max_features=1,
random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(10, len(clf))
def test_iris():
"""Check consistency on dataset iris."""
for c in ("gini", "entropy"):
# Random forest
clf = RandomForestClassifier(n_estimators=10, criterion=c,
random_state=1)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert score > 0.9, "Failed with criterion %s and score = %f" % (c,
score)
clf = RandomForestClassifier(n_estimators=10, criterion=c,
max_features=2, random_state=1)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert score > 0.5, "Failed with criterion %s and score = %f" % (c,
score)
# Extra-trees
clf = ExtraTreesClassifier(n_estimators=10, criterion=c,
random_state=1)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert score > 0.9, "Failed with criterion %s and score = %f" % (c,
score)
clf = ExtraTreesClassifier(n_estimators=10, criterion=c,
max_features=2, random_state=1)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert score > 0.9, "Failed with criterion %s and score = %f" % (c,
score)
def test_boston():
"""Check consistency on dataset boston house prices."""
for c in ("mse",):
# Random forest
clf = RandomForestRegressor(n_estimators=5, criterion=c,
random_state=1)
clf.fit(boston.data, boston.target)
score = clf.score(boston.data, boston.target)
assert score < 3, ("Failed with max_features=None, "
"criterion %s and score = %f" % (c, score))
clf = RandomForestRegressor(n_estimators=5, criterion=c,
max_features=6, random_state=1)
clf.fit(boston.data, boston.target)
score = clf.score(boston.data, boston.target)
assert score < 3, ("Failed with max_features=None, "
"criterion %s and score = %f" % (c, score))
# Extra-trees
clf = ExtraTreesRegressor(n_estimators=5, criterion=c, random_state=1)
clf.fit(boston.data, boston.target)
score = clf.score(boston.data, boston.target)
assert score < 3, ("Failed with max_features=None, "
"criterion %s and score = %f" % (c, score))
clf = ExtraTreesRegressor(n_estimators=5, criterion=c, max_features=6,
random_state=1)
clf.fit(boston.data, boston.target)
score = clf.score(boston.data, boston.target)
assert score < 3, ("Failed with max_features=None, "
"criterion %s and score = %f" % (c, score))
def test_probability():
"""Predict probabilities."""
# Random forest
clf = RandomForestClassifier(n_estimators=10, random_state=1,
max_features=1, max_depth=1)
clf.fit(iris.data, iris.target)
assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1),
np.ones(iris.data.shape[0]))
assert_array_almost_equal(clf.predict_proba(iris.data),
np.exp(clf.predict_log_proba(iris.data)))
# Extra-trees
clf = ExtraTreesClassifier(n_estimators=10, random_state=1, max_features=1,
max_depth=1)
clf.fit(iris.data, iris.target)
assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1),
np.ones(iris.data.shape[0]))
assert_array_almost_equal(clf.predict_proba(iris.data),
np.exp(clf.predict_log_proba(iris.data)))
def test_importances():
"""Check variable importances."""
X, y = datasets.make_classification(n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0)
clf = RandomForestClassifier(n_estimators=10, compute_importances=True)
clf.fit(X, y)
importances = clf.feature_importances_
n_important = sum(importances > 0.1)
assert_equal(importances.shape[0], 10)
assert_equal(n_important, 3)
X_new = clf.transform(X, threshold="mean")
assert_less(0 < X_new.shape[1], X.shape[1])
clf = RandomForestClassifier(n_estimators=10)
clf.fit(X, y)
assert_true(clf.feature_importances_ is None)
def test_oob_score_classification():
"""Check that oob prediction is as acurate as
usual prediction on the training set.
Not really a good test that prediction is independent."""
clf = RandomForestClassifier(oob_score=True, random_state=rng)
clf.fit(X, y)
training_score = clf.score(X, y)
assert_almost_equal(training_score, clf.oob_score_)
def test_oob_score_regression():
"""Check that oob prediction is pessimistic estimate.
Not really a good test that prediction is independent."""
clf = RandomForestRegressor(n_estimators=50, oob_score=True,
random_state=rng)
n_samples = boston.data.shape[0]
clf.fit(boston.data[:n_samples / 2, :], boston.target[:n_samples / 2])
test_score = clf.score(boston.data[n_samples / 2:, :],
boston.target[n_samples / 2:])
assert_greater(test_score, clf.oob_score_)
assert_greater(clf.oob_score_, .8)
def test_gridsearch():
"""Check that base trees can be grid-searched."""
# Random forest
forest = RandomForestClassifier()
parameters = {'n_estimators': (1, 2),
'max_depth': (1, 2)}
clf = GridSearchCV(forest, parameters)
clf.fit(iris.data, iris.target)
# Extra-trees
forest = ExtraTreesClassifier()
parameters = {'n_estimators': (1, 2),
'max_depth': (1, 2)}
clf = GridSearchCV(forest, parameters)
clf.fit(iris.data, iris.target)
def test_parallel():
"""Check parallel computations."""
# Classification
forest = RandomForestClassifier(n_estimators=10, n_jobs=3, random_state=0)
forest.fit(iris.data, iris.target)
assert_true(10 == len(forest))
forest.set_params(n_jobs=1)
y1 = forest.predict(iris.data)
forest.set_params(n_jobs=2)
y2 = forest.predict(iris.data)
assert_array_equal(y1, y2)
# Regression
forest = RandomForestRegressor(n_estimators=10, n_jobs=3, random_state=0)
forest.fit(boston.data, boston.target)
assert_true(10 == len(forest))
forest.set_params(n_jobs=1)
y1 = forest.predict(boston.data)
forest.set_params(n_jobs=2)
y2 = forest.predict(boston.data)
assert_array_almost_equal(y1, y2, 3)
# Use all cores on the classification dataset
forest = RandomForestClassifier(n_jobs=-1)
forest.fit(iris.data, iris.target)
def test_pickle():
"""Check pickability."""
import pickle
# Random forest
obj = RandomForestClassifier()
obj.fit(iris.data, iris.target)
score = obj.score(iris.data, iris.target)
s = pickle.dumps(obj)
obj2 = pickle.loads(s)
assert_equal(type(obj2), obj.__class__)
score2 = obj2.score(iris.data, iris.target)
assert_true(score == score2)
obj = RandomForestRegressor()
obj.fit(boston.data, boston.target)
score = obj.score(boston.data, boston.target)
s = pickle.dumps(obj)
obj2 = pickle.loads(s)
assert_equal(type(obj2), obj.__class__)
score2 = obj2.score(boston.data, boston.target)
assert_true(score == score2)
# Extra-trees
obj = ExtraTreesClassifier()
obj.fit(iris.data, iris.target)
score = obj.score(iris.data, iris.target)
s = pickle.dumps(obj)
obj2 = pickle.loads(s)
assert_equal(type(obj2), obj.__class__)
score2 = obj2.score(iris.data, iris.target)
assert_true(score == score2)
obj = ExtraTreesRegressor()
obj.fit(boston.data, boston.target)
score = obj.score(boston.data, boston.target)
s = pickle.dumps(obj)
obj2 = pickle.loads(s)
assert_equal(type(obj2), obj.__class__)
score2 = obj2.score(boston.data, boston.target)
assert_true(score == score2)
if __name__ == "__main__":
import nose
nose.runmodule()
|