1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
"""
Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting).
"""
import numpy as np
from numpy.testing import assert_array_equal
from numpy.testing import assert_equal
from nose.tools import assert_raises
from sklearn.metrics import mean_squared_error
from sklearn.utils import check_random_state
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import datasets
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]
rng = np.random.RandomState(0)
# also load the boston dataset
# and randomly permute it
boston = datasets.load_boston()
perm = rng.permutation(boston.target.size)
boston.data = boston.data[perm]
boston.target = boston.target[perm]
# also load the iris dataset
# and randomly permute it
iris = datasets.load_iris()
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
def test_classification_toy():
"""Check classification on a toy dataset."""
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
assert_raises(ValueError, clf.predict, T)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(100, len(clf.estimators_))
deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:])
assert np.any(deviance_decrease >= 0.0), \
"Train deviance does not monotonically decrease."
def test_parameter_checks():
"""Check input parameter validation."""
assert_raises(ValueError, GradientBoostingClassifier, n_estimators=0)
assert_raises(ValueError, GradientBoostingClassifier, n_estimators=-1)
assert_raises(ValueError, GradientBoostingClassifier, learn_rate=0.0)
assert_raises(ValueError, GradientBoostingClassifier, learn_rate=-1.0)
assert_raises(ValueError, GradientBoostingRegressor, loss='foobar')
assert_raises(ValueError, GradientBoostingClassifier,
min_samples_split=0.0)
assert_raises(ValueError, GradientBoostingClassifier,
min_samples_split=-1.0)
assert_raises(ValueError, GradientBoostingClassifier, min_samples_leaf=0)
assert_raises(ValueError, GradientBoostingClassifier, min_samples_leaf=-1.)
assert_raises(ValueError, GradientBoostingClassifier, subsample=0.0)
assert_raises(ValueError, GradientBoostingClassifier, subsample=1.1)
assert_raises(ValueError, GradientBoostingClassifier, subsample=-0.1)
assert_raises(ValueError, GradientBoostingClassifier, max_depth=-0.1)
assert_raises(ValueError, GradientBoostingClassifier, max_depth=0)
assert_raises(ValueError, GradientBoostingClassifier, init={})
# test fit before feature importance
assert_raises(ValueError,
lambda: GradientBoostingClassifier().feature_importances_)
# binomial deviance requires ``n_classes == 2``.
assert_raises(ValueError,
lambda X, y: GradientBoostingClassifier(
loss='bdeviance').fit(X, y),
X, [0, 0, 1, 1, 2, 2])
# multinomial deviance requires ``n_classes > 2``.
assert_raises(ValueError,
lambda X, y: GradientBoostingClassifier(
loss='mdeviance').fit(X, y),
X, [0, 0, 1, 1, 1, 0])
# deviance requires ``n_classes >= 2``.
assert_raises(ValueError,
lambda X, y: GradientBoostingClassifier(
loss='deviance').fit(X, y),
X, [0, 0, 0, 0])
def test_classification_synthetic():
"""Test GradientBoostingClassifier on synthetic dataset used by
Hastie et al. in ESLII Example 12.7. """
X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)
X_train, X_test = X[:2000], X[2000:]
y_train, y_test = y[:2000], y[2000:]
gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=1,
max_depth=1,
learn_rate=1.0, random_state=0)
gbrt.fit(X_train, y_train)
error_rate = (1.0 - gbrt.score(X_test, y_test))
assert error_rate < 0.085, \
"GB failed with error %.4f" % error_rate
gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=1,
max_depth=1,
learn_rate=1.0, subsample=0.5,
random_state=0)
gbrt.fit(X_train, y_train)
error_rate = (1.0 - gbrt.score(X_test, y_test))
assert error_rate < 0.08, \
"Stochastic GB failed with error %.4f" % error_rate
def test_boston():
"""Check consistency on dataset boston house prices with least squares
and least absolute deviation. """
for loss in ("ls", "lad"):
clf = GradientBoostingRegressor(n_estimators=100, loss=loss,
max_depth=4,
min_samples_split=1, random_state=1)
assert_raises(ValueError, clf.predict, boston.data)
clf.fit(boston.data, boston.target)
y_pred = clf.predict(boston.data)
mse = mean_squared_error(boston.target, y_pred)
assert mse < 6.0, "Failed with loss %s and mse = %.4f" % (loss, mse)
def test_iris():
"""Check consistency on dataset iris."""
for subsample in (1.0, 0.5):
clf = GradientBoostingClassifier(n_estimators=100, loss='deviance',
random_state=1, subsample=subsample)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert score > 0.9, "Failed with subsample %.1f " \
"and score = %f" % (subsample, score)
def test_regression_synthetic():
"""Test on synthetic regression datasets used in Leo Breiman,
`Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). """
random_state = check_random_state(1)
regression_params = {'n_estimators': 100, 'max_depth': 4,
'min_samples_split': 1, 'learn_rate': 0.1,
'loss': 'ls'}
# Friedman1
X, y = datasets.make_friedman1(n_samples=1200,
random_state=random_state, noise=1.0)
X_train, y_train = X[:200], y[:200]
X_test, y_test = X[200:], y[200:]
clf = GradientBoostingRegressor()
clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
assert mse < 5.0, "Failed on Friedman1 with mse = %.4f" % mse
# Friedman2
X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state)
X_train, y_train = X[:200], y[:200]
X_test, y_test = X[200:], y[200:]
clf = GradientBoostingRegressor(**regression_params)
clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
assert mse < 1700.0, "Failed on Friedman2 with mse = %.4f" % mse
# Friedman3
X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state)
X_train, y_train = X[:200], y[:200]
X_test, y_test = X[200:], y[200:]
clf = GradientBoostingRegressor(**regression_params)
clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
assert mse < 0.015, "Failed on Friedman3 with mse = %.4f" % mse
def test_feature_importances():
clf = GradientBoostingRegressor(n_estimators=100, max_depth=4,
min_samples_split=1, random_state=1)
clf.fit(boston.data, boston.target)
feature_importances = clf.feature_importances_
# true feature importance ranking
true_ranking = np.array([3, 1, 8, 10, 2, 9, 4, 11, 0, 6, 7, 5, 12])
assert_array_equal(true_ranking, feature_importances.argsort())
def test_probability():
"""Predict probabilities."""
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
assert_raises(ValueError, clf.predict_proba, T)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
# check if probabilities are in [0, 1].
y_proba = clf.predict_proba(T)
assert np.all(y_proba >= 0.0)
assert np.all(y_proba <= 1.0)
# derive predictions from probabilities
y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0)
assert_array_equal(y_pred, true_result)
def test_check_inputs():
"""Test input checks (shape and type of X and y)."""
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
assert_raises(ValueError, clf.fit, X, y + [0, 1])
from scipy import sparse
X_sparse = sparse.csr_matrix(X)
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
assert_raises(ValueError, clf.fit, X_sparse, y)
clf = GradientBoostingClassifier().fit(X, y)
assert_raises(ValueError, clf.predict, X_sparse)
def test_check_inputs_predict():
"""X has wrong shape """
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
clf.fit(X, y)
x = np.array([1.0, 2.0])[:, np.newaxis]
assert_raises(ValueError, clf.predict, x)
x = np.array([])
assert_raises(ValueError, clf.predict, x)
x = np.array([1.0, 2.0, 3.0])[:, np.newaxis]
assert_raises(ValueError, clf.predict, x)
clf = GradientBoostingRegressor(n_estimators=100, random_state=1)
clf.fit(X, rng.rand(len(X)))
x = np.array([1.0, 2.0])[:, np.newaxis]
assert_raises(ValueError, clf.predict, x)
x = np.array([])
assert_raises(ValueError, clf.predict, x)
x = np.array([1.0, 2.0, 3.0])[:, np.newaxis]
assert_raises(ValueError, clf.predict, x)
def test_staged_predict():
"""Test whether staged decision function eventually gives
the same prediction.
"""
X, y = datasets.make_friedman1(n_samples=1200,
random_state=1, noise=1.0)
X_train, y_train = X[:200], y[:200]
X_test, y_test = X[200:], y[200:]
clf = GradientBoostingRegressor()
# test raise ValueError if not fitted
assert_raises(ValueError, lambda X: np.fromiter(
clf.staged_predict(X), dtype=np.float64), X_test)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
# test if prediction for last stage equals ``predict``
for y in clf.staged_predict(X_test):
assert_equal(y.shape, y_pred.shape)
assert_array_equal(y_pred, y)
def test_serialization():
"""Check model serialization."""
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(100, len(clf.estimators_))
try:
import cPickle as pickle
except ImportError:
import pickle
serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL)
clf = None
clf = pickle.loads(serialized_clf)
assert_array_equal(clf.predict(T), true_result)
assert_equal(100, len(clf.estimators_))
def test_degenerate_targets():
"""Check if we can fit even though all targets are equal. """
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
# classifier should raise exception
assert_raises(ValueError, clf.fit, X, np.ones(len(X)))
clf = GradientBoostingRegressor(n_estimators=100, random_state=1)
clf.fit(X, np.ones(len(X)))
clf.predict(rng.rand(2))
assert_array_equal(np.ones((1,), dtype=np.float64),
clf.predict(rng.rand(2)))
|