1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
# Author: Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD-style.
from collections import Mapping, Sequence
from operator import itemgetter
import numpy as np
import scipy.sparse as sp
from ..base import BaseEstimator, TransformerMixin
from ..utils import atleast2d_or_csr
def _tosequence(X):
"""Turn X into a sequence or ndarray, avoiding a copy if possible."""
if isinstance(X, Mapping):
return [X]
elif isinstance(X, (Sequence, np.ndarray)):
return X
else:
return list(X)
class DictVectorizer(BaseEstimator, TransformerMixin):
"""Transforms lists of feature-value mappings to vectors.
This transformer turns lists of mappings (dict-like objects) of feature
names to feature values into Numpy arrays or scipy.sparse matrices for use
with scikit-learn estimators.
When feature values are strings, this transformer will do a binary one-hot
(aka one-of-K) coding: one boolean-valued feature is constructed for each
of the possible string values that the feature can take on. For instance,
a feature "f" that can take on the values "ham" and "spam" will become two
features in the output, one signifying "f=ham", the other "f=spam".
Features that do not occur in a sample (mapping) will have a zero value
in the resulting array/matrix.
Parameters
----------
dtype : callable, optional
The type of feature values. Passed to Numpy array/scipy.sparse matrix
constructors as the dtype argument.
separator: string, optional
Separator string used when constructing new features for one-hot
coding.
sparse: boolean, optional.
Whether transform should produce scipy.sparse matrices.
True by default.
Examples
--------
>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2., 0., 1.],
[ 0., 1., 3.]])
>>> v.inverse_transform(X) == \
[{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0., 0., 4.]])
"""
def __init__(self, dtype=np.float64, separator="=", sparse=True):
self.dtype = dtype
self.separator = separator
self.sparse = sparse
def fit(self, X, y=None):
"""Learn a list of feature name -> indices mappings.
Parameters
----------
X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
y : (ignored)
Returns
-------
self
"""
X = _tosequence(X)
# collect all the possible feature names
feature_names = set()
for x in X:
for f, v in x.iteritems():
if isinstance(v, basestring):
f = "%s%s%s" % (f, self.separator, v)
feature_names.add(f)
# sort the feature names to define the mapping
feature_names = sorted(feature_names)
self.vocabulary_ = dict((f, i) for i, f in enumerate(feature_names))
self.feature_names_ = feature_names
return self
def fit_transform(self, X, y=None):
"""Learn a list of feature name -> indices mappings and transform X.
Like fit(X) followed by transform(X).
Parameters
----------
X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
y : (ignored)
Returns
-------
Xa : {array, sparse matrix}
Feature vectors; always 2-d.
"""
X = _tosequence(X)
self.fit(X)
return self.transform(X)
def inverse_transform(self, X, dict_type=dict):
"""Transform array or sparse matrix X back to feature mappings.
X must have been produced by this DictVectorizer's transform or
fit_transform method; it may only have passed through transformers
that preserve the number of features and their order.
In the case of one-hot/one-of-K coding, the constructed feature
names and values are returned rather than the original ones.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Sample matrix.
dict_type : callable, optional
Constructor for feature mappings. Must conform to the
collections.Mapping API.
Returns
-------
D : list of dict_type objects, length = n_samples
Feature mappings for the samples in X.
"""
X = atleast2d_or_csr(X) # COO matrix is not subscriptable
names = self.feature_names_
Xd = [dict_type() for _ in xrange(X.shape[0])]
if sp.issparse(X):
for i, j in zip(*X.nonzero()):
Xd[i][names[j]] = X[i, j]
else:
for i in xrange(X.shape[0]):
d = Xd[i]
for j, v in enumerate(X[i, :]):
if v != 0:
d[names[j]] = X[i, j]
return Xd
def transform(self, X, y=None):
"""Transform feature->value dicts to array or sparse matrix.
Named features not encountered during fit or fit_transform will be
silently ignored.
Parameters
----------
X : Mapping or iterable over Mappings, length = n_samples
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
y : (ignored)
Returns
-------
Xa : {array, sparse matrix}
Feature vectors; always 2-d.
"""
dtype = self.dtype
vocab = self.vocabulary_
if self.sparse:
X = [X] if isinstance(X, Mapping) else X
i_ind = []
j_ind = []
values = []
for i, x in enumerate(X):
for f, v in x.iteritems():
if isinstance(v, basestring):
f = "%s%s%s" % (f, self.separator, v)
v = 1
try:
j = vocab[f]
i_ind.append(i)
j_ind.append(j)
values.append(dtype(v))
except KeyError:
pass
shape = (i + 1, len(vocab))
return sp.coo_matrix((values, (i_ind, j_ind)),
shape=shape, dtype=dtype)
else:
X = _tosequence(X)
Xa = np.zeros((len(X), len(vocab)), dtype=dtype)
for i, x in enumerate(X):
for f, v in x.iteritems():
if isinstance(v, basestring):
f = "%s%s%s" % (f, self.separator, v)
v = 1
try:
Xa[i, vocab[f]] = dtype(v)
except KeyError:
pass
return Xa
def get_feature_names(self):
"""Returns a list of feature names, ordered by their indices.
If one-of-K coding is applied to categorical features, this will
include the constructed feature names but not the original ones.
"""
return self.feature_names_
def restrict(self, support, indices=False):
"""Restrict the features to those in support.
Parameters
----------
support : array-like
Boolean mask or list of indices (as returned by the get_support
member of feature selectors).
indices : boolean, optional
Whether support is a list of indices.
"""
if not indices:
support = np.where(support)[0]
names = self.feature_names_
new_vocab = {}
for i in support:
new_vocab[names[i]] = len(new_vocab)
self.vocabulary_ = new_vocab
self.feature_names_ = [f for f, i in sorted(new_vocab.iteritems(),
key=itemgetter(1))]
return self
|