1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Vincent Michel <vincent.michel@inria.fr>
# Gilles Louppe <g.louppe@gmail.com>
#
# License: BSD Style.
"""Recursive feature elimination for feature ranking"""
import numpy as np
from ..base import BaseEstimator
from ..base import clone
from ..base import is_classifier
from ..cross_validation import check_cv
class RFE(BaseEstimator):
"""Feature ranking with recursive feature elimination.
Given an external estimator that assigns weights to features (e.g., the
coefficients of a linear model), the goal of recursive feature elimination
(RFE) is to select features by recursively considering smaller and smaller
sets of features. First, the estimator is trained on the initial set of
features and weights are assigned to each one of them. Then, features whose
absolute weights are the smallest are pruned from the current set features.
That procedure is recursively repeated on the pruned set until the desired
number of features to select is eventually reached.
Parameters
----------
estimator : object
A supervised learning estimator with a `fit` method that updates a
`coef_` attribute that holds the fitted parameters. Important features
must correspond to high absolute values in the `coef_` array.
For instance, this is the case for most supervised learning
algorithms such as Support Vector Classifiers and Generalized
Linear Models from the `svm` and `linear_model` modules.
n_features_to_select : int
The number of features to select.
step : int or float, optional (default=1)
If greater than or equal to 1, then `step` corresponds to the (integer)
number of features to remove at each iteration.
If within (0.0, 1.0), then `step` corresponds to the percentage
(rounded down) of features to remove at each iteration.
Attributes
----------
`n_features_` : int
The number of selected features.
`support_` : array of shape [n_features]
The mask of selected features.
`ranking_` : array of shape [n_features]
The feature ranking, such that `ranking_[i]` corresponds to the \
ranking position of the i-th feature. Selected (i.e., estimated \
best) features are assigned rank 1.
Examples
--------
The following example shows how to retrieve the 5 right informative
features in the Friedman #1 dataset.
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFE
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFE(estimator, 5, step=1)
>>> selector = selector.fit(X, y)
>>> selector.support_ # doctest: +NORMALIZE_WHITESPACE
array([ True, True, True, True, True,
False, False, False, False, False], dtype=bool)
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
References
----------
.. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection
for cancer classification using support vector machines",
Mach. Learn., 46(1-3), 389--422, 2002.
"""
def __init__(self, estimator, n_features_to_select, step=1):
self.estimator = estimator
self.n_features_to_select = n_features_to_select
self.step = step
def fit(self, X, y):
"""Fit the RFE model and then the underlying estimator on the selected
features.
Parameters
----------
X : array of shape [n_samples, n_features]
The training input samples.
y : array of shape [n_samples]
The target values.
"""
# Initialization
n_features = X.shape[1]
if 0.0 < self.step < 1.0:
step = int(self.step * n_features)
else:
step = int(self.step)
if step <= 0:
raise ValueError("Step must be >0")
support_ = np.ones(n_features, dtype=np.bool)
ranking_ = np.ones(n_features, dtype=np.int)
# Elimination
while np.sum(support_) > self.n_features_to_select:
# Remaining features
features = np.arange(n_features)[support_]
# Rank the remaining features
estimator = clone(self.estimator)
estimator.fit(X[:, features], y)
if estimator.coef_.ndim > 1:
ranks = np.argsort(np.sum(estimator.coef_ ** 2, axis=0))
else:
ranks = np.argsort(estimator.coef_ ** 2)
# Eliminate the worse features
threshold = min(step, np.sum(support_) - self.n_features_to_select)
support_[features[ranks][:threshold]] = False
ranking_[np.logical_not(support_)] += 1
# Set final attributes
self.estimator.fit(X[:, support_], y)
self.n_features_ = support_.sum()
self.support_ = support_
self.ranking_ = ranking_
return self
def predict(self, X):
"""Reduce X to the selected features and then predict using the
underlying estimator.
Parameters
----------
X : array of shape [n_samples, n_features]
The input samples.
Returns
-------
y : array of shape [n_samples]
The predicted target values.
"""
return self.estimator.predict(X[:, self.support_])
def score(self, X, y):
"""Reduce X to the selected features and then return the score of the
underlying estimator.
Parameters
----------
X : array of shape [n_samples, n_features]
The input samples.
y : array of shape [n_samples]
The target values.
"""
return self.estimator.score(X[:, self.support_], y)
def transform(self, X):
"""Reduce X to the selected features during the elimination.
Parameters
----------
X : array of shape [n_samples, n_features]
The input samples.
Returns
-------
X_r : array of shape [n_samples, n_selected_features]
The input samples with only the features selected during the \
elimination.
"""
return X[:, self.support_]
class RFECV(RFE):
"""Feature ranking with recursive feature elimination and cross-validated
selection of the best number of features.
Parameters
----------
estimator : object
A supervised learning estimator with a `fit` method that updates a
`coef_` attribute that holds the fitted parameters. Important features
must correspond to high absolute values in the `coef_` array.
For instance, this is the case for most supervised learning
algorithms such as Support Vector Classifiers and Generalized
Linear Models from the `svm` and `linear_model` modules.
step : int or float, optional (default=1)
If greater than or equal to 1, then `step` corresponds to the (integer)
number of features to remove at each iteration.
If within (0.0, 1.0), then `step` corresponds to the percentage
(rounded down) of features to remove at each iteration.
cv : int or cross-validation generator, optional (default=None)
If int, it is the number of folds.
If None, 3-fold cross-validation is performed by default.
Specific cross-validation objects can also be passed, see
`sklearn.cross_validation module` for details.
loss_function : function, optional (default=None)
The loss function to minimize by cross-validation. If None, then the
score function of the estimator is maximized.
Attributes
----------
`n_features_` : int
The number of selected features with cross-validation.
`support_` : array of shape [n_features]
The mask of selected features.
`ranking_` : array of shape [n_features]
The feature ranking, such that `ranking_[i]`
corresponds to the ranking
position of the i-th feature.
Selected (i.e., estimated best)
features are assigned rank 1.
`cv_scores_` : array of shape [n_subsets_of_features]
The cross-validation scores such that
`cv_scores_[i]` corresponds to
the CV score of the i-th subset of features.
Examples
--------
The following example shows how to retrieve the a-priori not known 5
informative features in the Friedman #1 dataset.
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFECV
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFECV(estimator, step=1, cv=5)
>>> selector = selector.fit(X, y)
>>> selector.support_ # doctest: +NORMALIZE_WHITESPACE
array([ True, True, True, True, True,
False, False, False, False, False], dtype=bool)
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
References
----------
.. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection
for cancer classification using support vector machines",
Mach. Learn., 46(1-3), 389--422, 2002.
"""
def __init__(self, estimator, step=1, cv=None, loss_func=None):
self.estimator = estimator
self.step = 1
self.cv = cv
self.loss_func = loss_func
def fit(self, X, y):
"""Fit the RFE model and automatically tune the number of selected
features.
Parameters
----------
X : array of shape [n_samples, n_features]
Training vector, where `n_samples` is the number of samples and
`n_features` is the total number of features.
y : array of shape [n_samples]
Target values (integers for classification, real numbers for
regression).
"""
# Initialization
rfe = RFE(estimator=self.estimator,
n_features_to_select=1,
step=self.step)
cv = check_cv(self.cv, X, y, is_classifier(self.estimator))
scores = {}
# Cross-validation
n = 0
for train, test in cv:
# Compute a full ranking of the features
ranking_ = rfe.fit(X[train], y[train]).ranking_
# Score each subset of features
for k in xrange(1, max(ranking_)):
mask = ranking_ <= k
estimator = clone(self.estimator)
estimator.fit(X[train][:, mask], y[train])
if self.loss_func is None:
score_k = 1.0 - estimator.score(
X[test][:, mask],
y[test])
else:
score_k = self.loss_func(
y[test],
estimator.predict(X[test][:, mask]))
if not k in scores:
scores[k] = 0.0
scores[k] += score_k
n += 1
# Pick the best number of features on average
best_score = np.inf
best_k = None
for k, score in sorted(scores.iteritems()):
if score < best_score:
best_score = score
best_k = k
# Re-execute an elimination with best_k over the whole set
rfe = RFE(estimator=self.estimator,
n_features_to_select=best_k,
step=self.step)
rfe.fit(X, y)
# Set final attributes
self.estimator.fit(X[:, rfe.support_], y)
self.n_features_ = rfe.n_features_
self.support_ = rfe.support_
self.ranking_ = rfe.ranking_
self.cv_scores_ = [0] * len(scores)
for k, score in scores.iteritems():
self.cv_scores_[k - 1] = score / n
return self
|