1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
"""
Todo: cross-check the F-value with stats model
"""
from sklearn.feature_selection import (chi2, f_classif, f_oneway, f_regression,
SelectPercentile, SelectKBest,
SelectFpr, SelectFdr, SelectFwe,
GenericUnivariateSelect)
from nose.tools import assert_equal, assert_true
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
from scipy import stats
from sklearn.datasets.samples_generator import make_classification, \
make_regression
##############################################################################
# Test the score functions
def test_f_oneway_vs_scipy_stats():
"""Test that our f_oneway gives the same result as scipy.stats"""
rng = np.random.RandomState(0)
X1 = rng.randn(10, 3)
X2 = 1 + rng.randn(10, 3)
f, pv = stats.f_oneway(X1, X2)
f2, pv2 = f_oneway(X1, X2)
assert_true(np.allclose(f, f2))
assert_true(np.allclose(pv, pv2))
def test_f_classif():
"""
Test whether the F test yields meaningful results
on a simple simulated classification problem
"""
X, Y = make_classification(n_samples=200, n_features=20,
n_informative=3, n_redundant=2,
n_repeated=0, n_classes=8,
n_clusters_per_class=1, flip_y=0.0,
class_sep=10, shuffle=False, random_state=0)
F, pv = f_classif(X, Y)
assert(F > 0).all()
assert(pv > 0).all()
assert(pv < 1).all()
assert(pv[:5] < 0.05).all()
assert(pv[5:] > 1.e-4).all()
def test_f_regression():
"""
Test whether the F test yields meaningful results
on a simple simulated regression problem
"""
X, Y = make_regression(n_samples=200, n_features=20,
n_informative=5, shuffle=False, random_state=0)
F, pv = f_regression(X, Y)
assert(F > 0).all()
assert(pv > 0).all()
assert(pv < 1).all()
assert(pv[:5] < 0.05).all()
assert(pv[5:] > 1.e-4).all()
def test_f_regression_input_dtype():
"""
Test whether f_regression returns the same value
for any numeric data_type
"""
rng = np.random.RandomState(0)
X = rng.rand(10, 20)
y = np.arange(10).astype(np.int)
F1, pv1 = f_regression(X, y)
F2, pv2 = f_regression(X, y.astype(np.float))
assert_array_almost_equal(F1, F2, 5)
assert_array_almost_equal(pv1, pv2, 5)
def test_f_classif_multi_class():
"""
Test whether the F test yields meaningful results
on a simple simulated classification problem
"""
X, Y = make_classification(n_samples=200, n_features=20,
n_informative=3, n_redundant=2,
n_repeated=0, n_classes=8,
n_clusters_per_class=1, flip_y=0.0,
class_sep=10, shuffle=False, random_state=0)
F, pv = f_classif(X, Y)
assert(F > 0).all()
assert(pv > 0).all()
assert(pv < 1).all()
assert(pv[:5] < 0.05).all()
assert(pv[5:] > 1.e-5).all()
def test_select_percentile_classif():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple classification problem
with the percentile heuristic
"""
X, Y = make_classification(n_samples=200, n_features=20,
n_informative=3, n_redundant=2,
n_repeated=0, n_classes=8,
n_clusters_per_class=1, flip_y=0.0,
class_sep=10, shuffle=False, random_state=0)
univariate_filter = SelectPercentile(f_classif, percentile=25)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_classif, mode='percentile',
param=25).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
##############################################################################
# Test univariate selection in classification settings
def test_select_kbest_classif():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple classification problem
with the k best heuristic
"""
X, Y = make_classification(n_samples=200, n_features=20,
n_informative=3, n_redundant=2,
n_repeated=0, n_classes=8,
n_clusters_per_class=1, flip_y=0.0,
class_sep=10, shuffle=False, random_state=0)
univariate_filter = SelectKBest(f_classif, k=5)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_classif, mode='k_best',
param=5).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
def test_select_fpr_classif():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple classification problem
with the fpr heuristic
"""
X, Y = make_classification(n_samples=200, n_features=20,
n_informative=3, n_redundant=2,
n_repeated=0, n_classes=8,
n_clusters_per_class=1, flip_y=0.0,
class_sep=10, shuffle=False, random_state=0)
univariate_filter = SelectFpr(f_classif, alpha=0.0001)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_classif, mode='fpr',
param=0.0001).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
def test_select_fdr_classif():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple classification problem
with the fpr heuristic
"""
X, Y = make_classification(n_samples=200, n_features=20,
n_informative=3, n_redundant=2,
n_repeated=0, n_classes=8,
n_clusters_per_class=1, flip_y=0.0,
class_sep=10, shuffle=False, random_state=0)
univariate_filter = SelectFdr(f_classif, alpha=0.0001)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_classif, mode='fdr',
param=0.0001).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
def test_select_fwe_classif():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple classification problem
with the fpr heuristic
"""
X, Y = make_classification(n_samples=200, n_features=20,
n_informative=3, n_redundant=2,
n_repeated=0, n_classes=8,
n_clusters_per_class=1, flip_y=0.0,
class_sep=10, shuffle=False, random_state=0)
univariate_filter = SelectFwe(f_classif, alpha=0.01)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_classif, mode='fwe',
param=0.01).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert(np.sum(np.abs(support - gtruth)) < 2)
##############################################################################
# Test univariate selection in regression settings
def test_select_percentile_regression():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple regression problem
with the percentile heuristic
"""
X, Y = make_regression(n_samples=200, n_features=20,
n_informative=5, shuffle=False, random_state=0)
univariate_filter = SelectPercentile(f_regression, percentile=25)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_regression, mode='percentile',
param=25).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
X_2 = X.copy()
X_2[:, np.logical_not(support)] = 0
assert_array_equal(X_2, univariate_filter.inverse_transform(X_r))
def test_select_percentile_regression_full():
"""
Test whether the relative univariate feature selection
selects all features when '100%' is asked.
"""
X, Y = make_regression(n_samples=200, n_features=20,
n_informative=5, shuffle=False, random_state=0)
univariate_filter = SelectPercentile(f_regression, percentile=100)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_regression, mode='percentile',
param=100).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.ones(20)
assert_array_equal(support, gtruth)
def test_select_kbest_regression():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple regression problem
with the k best heuristic
"""
X, Y = make_regression(n_samples=200, n_features=20,
n_informative=5, shuffle=False, random_state=0)
univariate_filter = SelectKBest(f_regression, k=5)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_regression, mode='k_best',
param=5).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
def test_select_fpr_regression():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple regression problem
with the fpr heuristic
"""
X, Y = make_regression(n_samples=200, n_features=20,
n_informative=5, shuffle=False, random_state=0)
univariate_filter = SelectFpr(f_regression, alpha=0.01)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_regression, mode='fpr',
param=0.01).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert(support[:5] == 1).all()
assert(np.sum(support[5:] == 1) < 3)
def test_select_fdr_regression():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple regression problem
with the fdr heuristic
"""
X, Y = make_regression(n_samples=200, n_features=20,
n_informative=5, shuffle=False, random_state=0)
univariate_filter = SelectFdr(f_regression, alpha=0.01)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_regression, mode='fdr',
param=0.01).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
def test_select_fwe_regression():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple regression problem
with the fwe heuristic
"""
X, Y = make_regression(n_samples=200, n_features=20,
n_informative=5, shuffle=False, random_state=0)
univariate_filter = SelectFwe(f_regression, alpha=0.01)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_regression, mode='fwe',
param=0.01).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert(support[:5] == 1).all()
assert(np.sum(support[5:] == 1) < 2)
def test_selectkbest_tiebreaking():
"""Test whether SelectKBest actually selects k features in case of ties.
Prior to 0.11, SelectKBest would return more features than requested.
"""
X = [[1, 0, 0], [0, 1, 1]]
y = [0, 1]
X1 = SelectKBest(chi2, k=1).fit_transform(X, y)
assert_equal(X1.shape[1], 1)
X2 = SelectKBest(chi2, k=2).fit_transform(X, y)
assert_equal(X2.shape[1], 2)
|