File: hmm.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (1095 lines) | stat: -rw-r--r-- 41,734 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
# Hidden Markov Models
#
# Author: Ron Weiss <ronweiss@gmail.com>
# and Shiqiao Du <lucidfrontier.45@gmail.com>

"""
The :mod:`sklearn.hmm` module implements hidden Markov models.

**Warning:** :mod:`sklearn.hmm` is orphaned, undocumented and has known
numerical stability issues. If nobody volunteers to write documentation and
make it more stable, this module will be removed in version 0.11.
"""

import string

import numpy as np

from .utils import check_random_state
from .utils.extmath import logsumexp
from .base import BaseEstimator
from .mixture import (
    GMM, log_multivariate_normal_density, sample_gaussian,
    distribute_covar_matrix_to_match_covariance_type, _validate_covars)
from . import cluster
from .utils import deprecated
from . import _hmmc


ZEROLOGPROB = -1e200
EPS = np.finfo(float).eps
NEGINF = -np.inf
decoder_algorithms = ("viterbi", "map")


def normalize(A, axis=None):
    """ Normalize the input array so that it sums to 1.

    Parameters
    ----------
    A: array, shape (n_samples, n_features)
       Non-normalized input data
    axis: int
          dimension along which normalization is performed

    Returns
    -------
    normalized_A: array, shape (n_samples, n_features)
        A with values normalized (summing to 1) along the prescribed axis

    WARNING: Modifies inplace the array
    """
    A += EPS
    Asum = A.sum(axis)
    if axis and A.ndim > 1:
        # Make sure we don't divide by zero.
        Asum[Asum == 0] = 1
        shape = list(A.shape)
        shape[axis] = 1
        Asum.shape = shape
    return A / Asum


class _BaseHMM(BaseEstimator):
    """Hidden Markov Model base class.

    Representation of a hidden Markov model probability distribution.
    This class allows for easy evaluation of, sampling from, and
    maximum-likelihood estimation of the parameters of a HMM.

    See the instance documentation for details specific to a
    particular object.

    Attributes
    ----------
    n_components : int
        Number of states in the model.

    transmat : array, shape (`n_components`, `n_components`)
        Matrix of transition probabilities between states.

    startprob : array, shape ('n_components`,)
        Initial state occupation distribution.

    transmat_prior : array, shape (`n_components`, `n_components`)
        Matrix of prior transition probabilities between states.

    startprob_prior : array, shape ('n_components`,)
        Initial state occupation prior distribution.

    algorithm : string, one of the decoder_algorithms
        decoder algorithm

    random_state: RandomState or an int seed (0 by default)
        A random number generator instance

    See Also
    --------
    GMM : Gaussian mixture model
    """

    # This class implements the public interface to all HMMs that
    # derive from it, including all of the machinery for the
    # forward-backward and Viterbi algorithms.  Subclasses need only
    # implement _generate_sample_from_state(), _compute_log_likelihood(),
    # _init(), _initialize_sufficient_statistics(),
    # _accumulate_sufficient_statistics(), and _do_mstep(), all of
    # which depend on the specific emission distribution.
    #
    # Subclasses will probably also want to implement properties for
    # the emission distribution parameters to expose them publically.

    def __init__(self, n_components=1, startprob=None, transmat=None,
            startprob_prior=None, transmat_prior=None,
            algorithm="viterbi", random_state=None):
        self.n_components = n_components

        if startprob is None:
            startprob = np.tile(1.0 / n_components, n_components)
        self.startprob_ = startprob

        if startprob_prior is None:
            startprob_prior = 1.0
        self.startprob_prior = startprob_prior

        if transmat is None:
            transmat = np.tile(1.0 / n_components,
                    (n_components, n_components))
        self.transmat_ = transmat

        if transmat_prior is None:
            transmat_prior = 1.0
        self.transmat_prior = transmat_prior

        if algorithm in decoder_algorithms:
            self._algorithm = algorithm
        else:
            self._algorithm = "viterbi"
        self.random_state = random_state

    def eval(self, obs):
        """Compute the log probability under the model and compute posteriors

        Implements rank and beam pruning in the forward-backward
        algorithm to speed up inference in large models.

        Parameters
        ----------
        obs : array_like, shape (n, n_features)
            Sequence of n_features-dimensional data points.  Each row
            corresponds to a single point in the sequence.

        Returns
        -------
        logprob : float
            Log likelihood of the sequence `obs`
        posteriors: array_like, shape (n, n_components)
            Posterior probabilities of each state for each
            observation

        See Also
        --------
        score : Compute the log probability under the model
        decode : Find most likely state sequence corresponding to a `obs`
        """
        obs = np.asarray(obs)
        framelogprob = self._compute_log_likelihood(obs)
        logprob, fwdlattice = self._do_forward_pass(framelogprob)
        bwdlattice = self._do_backward_pass(framelogprob)
        gamma = fwdlattice + bwdlattice
        # gamma is guaranteed to be correctly normalized by logprob at
        # all frames, unless we do approximate inference using pruning.
        # So, we will normalize each frame explicitly in case we
        # pruned too aggressively.
        posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
        posteriors += np.finfo(np.float32).eps
        posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
        return logprob, posteriors

    def score(self, obs):
        """Compute the log probability under the model.

        Parameters
        ----------
        obs : array_like, shape (n, n_features)
            Sequence of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        Returns
        -------
        logprob : float
            Log likelihood of the `obs`

        See Also
        --------
        eval : Compute the log probability under the model and posteriors
        decode : Find most likely state sequence corresponding to a `obs`
        """
        obs = np.asarray(obs)
        framelogprob = self._compute_log_likelihood(obs)
        logprob, _ = self._do_forward_pass(framelogprob)
        return logprob

    def _decode_viterbi(self, obs):
        """Find most likely state sequence corresponding to `obs`.

        Uses the Viterbi algorithm.

        Parameters
        ----------
        obs : array_like, shape (n, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        Returns
        -------
        viterbi_logprob : float
            Log probability of the maximum likelihood path through the HMM
        state_sequence : array_like, shape (n,)
            Index of the most likely states for each observation

        See Also
        --------
        eval : Compute the log probability under the model and posteriors
        score : Compute the log probability under the model
        """
        obs = np.asarray(obs)
        framelogprob = self._compute_log_likelihood(obs)
        viterbi_logprob, state_sequence = self._do_viterbi_pass(framelogprob)
        return viterbi_logprob, state_sequence

    def _decode_map(self, obs):
        """Find most likely state sequence corresponding to `obs`.

        Uses the maximum a posteriori estimation.

        Parameters
        ----------
        obs : array_like, shape (n, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        Returns
        -------
        map_logprob : float
            Log probability of the maximum likelihood path through the HMM
        state_sequence : array_like, shape (n,)
            Index of the most likely states for each observation

        See Also
        --------
        eval : Compute the log probability under the model and posteriors
        score : Compute the log probability under the model
        """
        _, posteriors = self.eval(obs)
        state_sequence = np.argmax(posteriors, axis=1)
        map_logprob = np.max(posteriors, axis=1).sum()
        return map_logprob, state_sequence

    def decode(self, obs, algorithm="viterbi"):
        """Find most likely state sequence corresponding to `obs`.
        Uses the selected algorithm for decoding.

        Parameters
        ----------
        obs : array_like, shape (n, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        algorithm : string, one of the `decoder_algorithms`
            decoder algorithm to be used

        Returns
        -------
        logprob : float
            Log probability of the maximum likelihood path through the HMM
        state_sequence : array_like, shape (n,)
            Index of the most likely states for each observation

        See Also
        --------
        eval : Compute the log probability under the model and posteriors
        score : Compute the log probability under the model
        """
        if self._algorithm in decoder_algorithms:
            algorithm = self._algorithm
        elif algorithm in decoder_algorithms:
            algorithm = algorithm
        decoder = {"viterbi": self._decode_viterbi,
                   "map": self._decode_map}
        logprob, state_sequence = decoder[algorithm](obs)
        return logprob, state_sequence

    def predict(self, obs, algorithm="viterbi"):
        """Find most likely state sequence corresponding to `obs`.

        Parameters
        ----------
        obs : array_like, shape (n, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        Returns
        -------
        state_sequence : array_like, shape (n,)
            Index of the most likely states for each observation
        """
        _, state_sequence = self.decode(obs, algorithm)
        return state_sequence

    def predict_proba(self, obs):
        """Compute the posterior probability for each state in the model

        Parameters
        ----------
        obs : array_like, shape (n, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        Returns
        -------
        T : array-like, shape (n, n_components)
            Returns the probability of the sample for each state in the model.
        """
        _, posteriors = self.eval(obs)
        return posteriors

    def sample(self, n=1, random_state=None):
        """Generate random samples from the model.

        Parameters
        ----------
        n : int
            Number of samples to generate.

        random_state: RandomState or an int seed (0 by default)
            A random number generator instance. If None is given, the
            object's random_state is used

        Returns
        -------
        (obs, hidden_states)
        obs : array_like, length `n` List of samples
        hidden_states : array_like, length `n` List of hidden states
        """
        if random_state is None:
            random_state = self.random_state
        random_state = check_random_state(random_state)

        startprob_pdf = self.startprob_
        startprob_cdf = np.cumsum(startprob_pdf)
        transmat_pdf = self.transmat_
        transmat_cdf = np.cumsum(transmat_pdf, 1)

        # Initial state.
        rand = random_state.rand()
        currstate = (startprob_cdf > rand).argmax()
        hidden_states = [currstate]
        obs = [self._generate_sample_from_state(
                                currstate, random_state=random_state)]

        for _ in xrange(n - 1):
            rand = random_state.rand()
            currstate = (transmat_cdf[currstate] > rand).argmax()
            hidden_states.append(currstate)
            obs.append(self._generate_sample_from_state(
                                currstate, random_state=random_state))

        return np.array(obs), np.array(hidden_states, dtype=int)

    @deprecated("rvs is deprecated in 0.11 will be removed in 0.13:"
            + " use sample instead")
    def rvs(self, n=1, random_state=None):
        return self.sample(n, random_state)

    def fit(self, obs, n_iter=10, thresh=1e-2, params=string.ascii_letters,
            init_params=string.ascii_letters, **kwargs):
        """Estimate model parameters.

        An initialization step is performed before entering the EM
        algorithm. If you want to avoid this step, set the keyword
        argument init_params to the empty string ''. Likewise, if you
        would like just to do an initialization, call this method with
        n_iter=0.

        Parameters
        ----------
        obs : list
            List of array-like observation sequences (shape (n_i, n_features)).

        n_iter : int, optional
            Number of iterations to perform.

        thresh : float, optional
            Convergence threshold.

        params : string, optional
            Controls which parameters are updated in the training
            process.  Can contain any combination of 's' for startprob,
            't' for transmat, 'm' for means, and 'c' for covars, etc.
            Defaults to all parameters.

        init_params : string, optional
            Controls which parameters are initialized prior to
            training.  Can contain any combination of 's' for
            startprob, 't' for transmat, 'm' for means, and 'c' for
            covars, etc.  Defaults to all parameters.

        Notes
        -----
        In general, `logprob` should be non-decreasing unless
        aggressive pruning is used.  Decreasing `logprob` is generally
        a sign of overfitting (e.g. a covariance parameter getting too
        small).  You can fix this by getting more training data, or
        decreasing `covars_prior`.
        """
        self._init(obs, init_params)

        logprob = []
        for i in xrange(n_iter):
            # Expectation step
            stats = self._initialize_sufficient_statistics()
            curr_logprob = 0
            for seq in obs:
                framelogprob = self._compute_log_likelihood(seq)
                lpr, fwdlattice = self._do_forward_pass(framelogprob)
                bwdlattice = self._do_backward_pass(framelogprob)
                gamma = fwdlattice + bwdlattice
                posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
                curr_logprob += lpr
                self._accumulate_sufficient_statistics(
                    stats, seq, framelogprob, posteriors, fwdlattice,
                    bwdlattice, params)
            logprob.append(curr_logprob)

            # Check for convergence.
            if i > 0 and abs(logprob[-1] - logprob[-2]) < thresh:
                break

            # Maximization step
            self._do_mstep(stats, params)

        return self

    def _get_algorithm(self):
        "decoder algorithm"
        return self._algorithm

    def _set_algorithm(self, algorithm):
        if algorithm not in decoder_algorithms:
            raise ValueError("algorithm must be one of the decoder_algorithms")
        self._algorithm = algorithm

    algorithm = property(_get_algorithm, _set_algorithm)

    def _get_startprob(self):
        """Mixing startprob for each state."""
        return np.exp(self._log_startprob)

    def _set_startprob(self, startprob):
        if len(startprob) != self.n_components:
            raise ValueError('startprob must have length n_components')
        if not np.allclose(np.sum(startprob), 1.0):
            raise ValueError('startprob must sum to 1.0')

        self._log_startprob = np.log(np.asarray(startprob).copy())

    startprob_ = property(_get_startprob, _set_startprob)

    def _get_transmat(self):
        """Matrix of transition probabilities."""
        return np.exp(self._log_transmat)

    def _set_transmat(self, transmat):
        if (np.asarray(transmat).shape
                != (self.n_components, self.n_components)):
            raise ValueError('transmat must have shape ' +
                    '(n_components, n_components)')
        if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
            raise ValueError('Rows of transmat must sum to 1.0')

        self._log_transmat = np.log(np.asarray(transmat).copy())
        underflow_idx = np.isnan(self._log_transmat)
        self._log_transmat[underflow_idx] = NEGINF

    transmat_ = property(_get_transmat, _set_transmat)

    def _do_viterbi_pass(self, framelogprob):
        n_observations, n_components = framelogprob.shape
        state_sequence, logprob = _hmmc._viterbi(
                n_observations, n_components, self._log_startprob,
                self._log_transmat, framelogprob)
        return logprob, state_sequence

    def _do_forward_pass(self, framelogprob):

        n_observations, n_components = framelogprob.shape
        fwdlattice = np.zeros((n_observations, n_components))
        _hmmc._forward(n_observations, n_components, self._log_startprob,
                self._log_transmat, framelogprob, fwdlattice)
        fwdlattice[fwdlattice <= ZEROLOGPROB] = NEGINF
        return logsumexp(fwdlattice[-1]), fwdlattice

    def _do_backward_pass(self, framelogprob):
        n_observations, n_components = framelogprob.shape
        bwdlattice = np.zeros((n_observations, n_components))
        _hmmc._backward(n_observations, n_components,
                self._log_startprob, self._log_transmat,
                framelogprob, bwdlattice)

        bwdlattice[bwdlattice <= ZEROLOGPROB] = NEGINF

        return bwdlattice

    def _compute_log_likelihood(self, obs):
        pass

    def _generate_sample_from_state(self, state, random_state=None):
        pass

    def _init(self, obs, params):
        if 's' in params:
            self.startprob_[:] = 1.0 / self.n_components
        if 't' in params:
            self.transmat_[:] = 1.0 / self.n_components

    # Methods used by self.fit()

    def _initialize_sufficient_statistics(self):
        stats = {'nobs': 0,
                 'start': np.zeros(self.n_components),
                 'trans': np.zeros((self.n_components, self.n_components))}
        return stats

    def _accumulate_sufficient_statistics(self, stats, seq, framelogprob,
                                          posteriors, fwdlattice, bwdlattice,
                                          params):
        stats['nobs'] += 1
        if 's' in params:
            stats['start'] += posteriors[0]
        if 't' in params:
            if _hmmc:
                n_observations, n_components = framelogprob.shape
                lneta = np.zeros((n_observations - 1,
                            n_components, n_components))
                lnP = logsumexp(fwdlattice[-1])
                _hmmc._compute_lneta(n_observations, n_components,
                        fwdlattice, self._log_transmat, bwdlattice,
                        framelogprob, lnP, lneta)
                stats["trans"] += np.exp(logsumexp(lneta, 0))
            else:
                for t in xrange(len(framelogprob)):
                    zeta = (fwdlattice[t - 1][:, np.newaxis]
                            + self._log_transmat + framelogprob[t]
                            + bwdlattice[t])
                    stats['trans'] += np.exp(zeta - logsumexp(zeta))

    def _do_mstep(self, stats, params):
        # Based on Huang, Acero, Hon, "Spoken Language Processing",
        # p. 443 - 445
        if 's' in params:
            self.startprob_ = normalize(
                np.maximum(self.startprob_prior - 1.0 + stats['start'], 1e-20))
        if 't' in params:
            self.transmat_ = normalize(
                np.maximum(self.transmat_prior - 1.0 + stats['trans'], 1e-20),
                axis=1)


class GaussianHMM(_BaseHMM):
    """Hidden Markov Model with Gaussian emissions

    Representation of a hidden Markov model probability distribution.
    This class allows for easy evaluation of, sampling from, and
    maximum-likelihood estimation of the parameters of a HMM.

    Parameters
    ----------
    n_components : int
        Number of states.

    _covariance_type : string
        String describing the type of covariance parameters to
        use.  Must be one of 'spherical', 'tied', 'diag', 'full'.
        Defaults to 'diag'.

    Attributes
    ----------
    covariance_type : string
        String describing the type of covariance parameters used by
        the model.  Must be one of 'spherical', 'tied', 'diag', 'full'.

    n_features : int
        Dimensionality of the Gaussian emissions.

    n_components : int
        Number of states in the model.

    transmat : array, shape (`n_components`, `n_components`)
        Matrix of transition probabilities between states.

    startprob : array, shape ('n_components`,)
        Initial state occupation distribution.

    means : array, shape (`n_components`, `n_features`)
        Mean parameters for each state.

    covars : array
        Covariance parameters for each state.  The shape depends on
        `_covariance_type`::

            (`n_components`,)                   if 'spherical',
            (`n_features`, `n_features`)              if 'tied',
            (`n_components`, `n_features`)           if 'diag',
            (`n_components`, `n_features`, `n_features`)  if 'full'

    random_state: RandomState or an int seed (0 by default)
        A random number generator instance

    Examples
    --------
    >>> from sklearn.hmm import GaussianHMM
    >>> GaussianHMM(n_components=2)
    ...                             #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
    GaussianHMM(algorithm='viterbi', covariance_type='diag', covars_prior=0.01,
        covars_weight=1, means_prior=None, means_weight=0, n_components=2,
        random_state=None, startprob=None, startprob_prior=1.0, transmat=None,
        transmat_prior=1.0)

    See Also
    --------
    GMM : Gaussian mixture model
    """

    def __init__(self, n_components=1, covariance_type='diag', startprob=None,
                 transmat=None, startprob_prior=None, transmat_prior=None,
                 algorithm="viterbi", means_prior=None, means_weight=0,
                 covars_prior=1e-2, covars_weight=1,
                 random_state=None):
        _BaseHMM.__init__(self, n_components, startprob, transmat,
                                        startprob_prior=startprob_prior,
                                        transmat_prior=transmat_prior,
                                        algorithm=algorithm,
                                        random_state=random_state)

        self._covariance_type = covariance_type
        if not covariance_type in ['spherical', 'tied', 'diag', 'full']:
            raise ValueError('bad covariance_type')

        self.means_prior = means_prior
        self.means_weight = means_weight

        self.covars_prior = covars_prior
        self.covars_weight = covars_weight

    # Read-only properties.
    @property
    def covariance_type(self):
        """Covariance type of the model.

        Must be one of 'spherical', 'tied', 'diag', 'full'.
        """
        return self._covariance_type

    def _get_means(self):
        """Mean parameters for each state."""
        return self._means_

    def _set_means(self, means):
        means = np.asarray(means)
        if hasattr(self, 'n_features') and \
               means.shape != (self.n_components, self.n_features):
            raise ValueError('means must have shape' +
                    '(n_components, n_features)')
        self._means_ = means.copy()
        self.n_features = self._means_.shape[1]

    means_ = property(_get_means, _set_means)

    def _get_covars(self):
        """Return covars as a full matrix."""
        if self._covariance_type == 'full':
            return self._covars_
        elif self._covariance_type == 'diag':
            return [np.diag(cov) for cov in self._covars_]
        elif self._covariance_type == 'tied':
            return [self._covars_] * self.n_components
        elif self._covariance_type == 'spherical':
            return [np.eye(self.n_features) * f for f in self._covars_]

    def _set_covars(self, covars):
        covars = np.asarray(covars)
        _validate_covars(covars, self._covariance_type, self.n_components)
        self._covars_ = covars.copy()

    covars_ = property(_get_covars, _set_covars)

    def _compute_log_likelihood(self, obs):
        return log_multivariate_normal_density(
            obs, self._means_, self._covars_, self._covariance_type)

    def _generate_sample_from_state(self, state, random_state=None):
        if self._covariance_type == 'tied':
            cv = self._covars_
        else:
            cv = self._covars_[state]
        return sample_gaussian(self._means_[state], cv, self._covariance_type,
                               random_state=random_state)

    def _init(self, obs, params='stmc'):
        super(GaussianHMM, self)._init(obs, params=params)

        if (hasattr(self, 'n_features')
            and self.n_features != obs[0].shape[1]):
            raise ValueError('Unexpected number of dimensions, got %s but '
                             'expected %s' % (obs[0].shape[1],
                                              self.n_features))

        self.n_features = obs[0].shape[1]

        if 'm' in params:
            self._means_ = cluster.KMeans(
                k=self.n_components).fit(obs[0]).cluster_centers_
        if 'c' in params:
            cv = np.cov(obs[0].T)
            if not cv.shape:
                cv.shape = (1, 1)
            self._covars_ = distribute_covar_matrix_to_match_covariance_type(
                cv, self._covariance_type, self.n_components)

    def _initialize_sufficient_statistics(self):
        stats = super(GaussianHMM, self)._initialize_sufficient_statistics()
        stats['post'] = np.zeros(self.n_components)
        stats['obs'] = np.zeros((self.n_components, self.n_features))
        stats['obs**2'] = np.zeros((self.n_components, self.n_features))
        stats['obs*obs.T'] = np.zeros((self.n_components, self.n_features,
                                       self.n_features))
        return stats

    def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
                                          posteriors, fwdlattice, bwdlattice,
                                          params):
        super(GaussianHMM, self)._accumulate_sufficient_statistics(
            stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice,
            params)

        if 'm' in params or 'c' in params:
            stats['post'] += posteriors.sum(axis=0)
            stats['obs'] += np.dot(posteriors.T, obs)

        if 'c' in params:
            if self._covariance_type in ('spherical', 'diag'):
                stats['obs**2'] += np.dot(posteriors.T, obs ** 2)
            elif self._covariance_type in ('tied', 'full'):
                for t, o in enumerate(obs):
                    obsobsT = np.outer(o, o)
                    for c in xrange(self.n_components):
                        stats['obs*obs.T'][c] += posteriors[t, c] * obsobsT

    def _do_mstep(self, stats, params):
        super(GaussianHMM, self)._do_mstep(stats, params)

        # Based on Huang, Acero, Hon, "Spoken Language Processing",
        # p. 443 - 445
        denom = stats['post'][:, np.newaxis]
        if 'm' in params:
            prior = self.means_prior
            weight = self.means_weight
            if prior is None:
                weight = 0
                prior = 0
            self._means_ = (weight * prior + stats['obs']) / (weight + denom)

        if 'c' in params:
            covars_prior = self.covars_prior
            covars_weight = self.covars_weight
            if covars_prior is None:
                covars_weight = 0
                covars_prior = 0

            means_prior = self.means_prior
            means_weight = self.means_weight
            if means_prior is None:
                means_weight = 0
                means_prior = 0
            meandiff = self._means_ - means_prior

            if self._covariance_type in ('spherical', 'diag'):
                cv_num = (means_weight * (meandiff) ** 2
                          + stats['obs**2']
                          - 2 * self._means_ * stats['obs']
                          + self._means_ ** 2 * denom)
                cv_den = max(covars_weight - 1, 0) + denom
                self._covars_ = (covars_prior + cv_num) / cv_den
                if self._covariance_type == 'spherical':
                    self._covars_ = np.tile(self._covars_.mean(1)
                            [:, np.newaxis], (1, self._covars_.shape[1]))
            elif self._covariance_type in ('tied', 'full'):
                cvnum = np.empty((self.n_components, self.n_features,
                                  self.n_features))
                for c in xrange(self.n_components):
                    obsmean = np.outer(stats['obs'][c], self._means_[c])

                    cvnum[c] = (means_weight * np.outer(meandiff[c],
                                                        meandiff[c])
                                + stats['obs*obs.T'][c]
                                - obsmean - obsmean.T
                                + np.outer(self._means_[c], self._means_[c])
                                * stats['post'][c])
                cvweight = max(covars_weight - self.n_features, 0)
                if self._covariance_type == 'tied':
                    self._covars_ = ((covars_prior + cvnum.sum(axis=0))
                                    / (cvweight + stats['post'].sum()))
                elif self._covariance_type == 'full':
                    self._covars_ = ((covars_prior + cvnum)
                                   / (cvweight + stats['post'][:, None, None]))


class MultinomialHMM(_BaseHMM):
    """Hidden Markov Model with multinomial (discrete) emissions

    Attributes
    ----------
    n_components : int
        Number of states in the model.

    n_symbols : int
        Number of possible symbols emitted by the model (in the observations).

    transmat : array, shape (`n_components`, `n_components`)
        Matrix of transition probabilities between states.

    startprob : array, shape ('n_components`,)
        Initial state occupation distribution.

    emissionprob : array, shape ('n_components`, 'n_symbols`)
        Probability of emitting a given symbol when in each state.

    random_state: RandomState or an int seed (0 by default)
        A random number generator instance

    Examples
    --------
    >>> from sklearn.hmm import MultinomialHMM
    >>> MultinomialHMM(n_components=2)
    ...                             #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
    MultinomialHMM(algorithm='viterbi', n_components=2, random_state=None,
                   startprob=None, startprob_prior=1.0, transmat=None,
                   transmat_prior=1.0)

    See Also
    --------
    GaussianHMM : HMM with Gaussian emissions
    """

    def __init__(self, n_components=1, startprob=None, transmat=None,
            startprob_prior=None, transmat_prior=None,
            algorithm="viterbi", random_state=None):
        """Create a hidden Markov model with multinomial emissions.

        Parameters
        ----------
        n_components : int
            Number of states.
        """
        _BaseHMM.__init__(self, n_components, startprob, transmat,
                                             startprob_prior=startprob_prior,
                                             transmat_prior=transmat_prior,
                                             algorithm=algorithm,
                                             random_state=random_state)

    def _get_emissionprob(self):
        """Emission probability distribution for each state."""
        return np.exp(self._log_emissionprob)

    def _set_emissionprob(self, emissionprob):
        emissionprob = np.asarray(emissionprob)
        if hasattr(self, 'n_symbols') and \
               emissionprob.shape != (self.n_components, self.n_symbols):
            raise ValueError('emissionprob must have shape '
                             '(n_components, n_symbols)')

        self._log_emissionprob = np.log(emissionprob)
        underflow_idx = np.isnan(self._log_emissionprob)
        self._log_emissionprob[underflow_idx] = NEGINF
        self.n_symbols = self._log_emissionprob.shape[1]

    emissionprob_ = property(_get_emissionprob, _set_emissionprob)

    def _compute_log_likelihood(self, obs):
        return self._log_emissionprob[:, obs].T

    def _generate_sample_from_state(self, state, random_state=None):
        cdf = np.cumsum(self.emissionprob_[state, :])
        random_state = check_random_state(random_state)
        rand = random_state.rand()
        symbol = (cdf > rand).argmax()
        return symbol

    def _init(self, obs, params='ste'):
        super(MultinomialHMM, self)._init(obs, params=params)
        self.random_state = check_random_state(self.random_state)

        if 'e' in params:
            emissionprob = normalize(self.random_state.rand(self.n_components,
                self.n_symbols), 1)
            self.emissionprob_ = emissionprob

    def _initialize_sufficient_statistics(self):
        stats = super(MultinomialHMM, self)._initialize_sufficient_statistics()
        stats['obs'] = np.zeros((self.n_components, self.n_symbols))
        return stats

    def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
                                          posteriors, fwdlattice, bwdlattice,
                                          params):
        super(MultinomialHMM, self)._accumulate_sufficient_statistics(
            stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice,
            params)
        if 'e' in params:
            for t, symbol in enumerate(obs):
                stats['obs'][:, symbol] += posteriors[t]

    def _do_mstep(self, stats, params):
        super(MultinomialHMM, self)._do_mstep(stats, params)
        if 'e' in params:
            self.emissionprob_ = (stats['obs']
                                 / stats['obs'].sum(1)[:, np.newaxis])


class GMMHMM(_BaseHMM):
    """Hidden Markov Model with Gaussin mixture emissions

    Attributes
    ----------
    n_components : int
        Number of states in the model.

    transmat : array, shape (`n_components`, `n_components`)
        Matrix of transition probabilities between states.

    startprob : array, shape ('n_components`,)
        Initial state occupation distribution.

    gmms : array of GMM objects, length `n_components`
        GMM emission distributions for each state.

    random_state: RandomState or an int seed (0 by default)
        A random number generator instance

    Examples
    --------
    >>> from sklearn.hmm import GMMHMM
    >>> GMMHMM(n_components=2, n_mix=10, covariance_type='diag')
    ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
    GMMHMM(algorithm='viterbi', covariance_type='diag', covars_prior=0.01,
        gmms=[GMM(covariance_type=None, init_params='wmc', min_covar=0.001,
        n_components=10, n_init=1, n_iter=100, params='wmc', random_state=None,
        thresh=0.01), GMM(covariance_type=None, init_params='wmc',
        min_covar=0.001, n_components=10, n_init=1, n_iter=100, params='wmc',
        random_state=None, thresh=0.01)], n_components=2, n_mix=10,
        random_state=None, startprob=None, startprob_prior=1.0, transmat=None,
        transmat_prior=1.0)

    See Also
    --------
    GaussianHMM : HMM with Gaussian emissions
    """

    def __init__(self, n_components=1, n_mix=1, startprob=None, transmat=None,
            startprob_prior=None, transmat_prior=None, algorithm="viterbi",
            gmms=None, covariance_type='diag', covars_prior=1e-2,
            random_state=None):
        """Create a hidden Markov model with GMM emissions.

        Parameters
        ----------
        n_components : int
            Number of states.
        """
        _BaseHMM.__init__(self, n_components, startprob, transmat,
                                     startprob_prior=startprob_prior,
                                     transmat_prior=transmat_prior,
                                     algorithm=algorithm,
                                     random_state=random_state)

        # XXX: Hotfit for n_mix that is incompatible with the scikit's
        # BaseEstimator API
        self.n_mix = n_mix
        self._covariance_type = covariance_type
        self.covars_prior = covars_prior
        if gmms is None:
            gmms = []
            for x in xrange(self.n_components):
                if covariance_type is None:
                    g = GMM(n_mix)
                else:
                    g = GMM(n_mix, covariance_type=covariance_type)
                gmms.append(g)
        self.gmms = gmms

    # Read-only properties.
    @property
    def covariance_type(self):
        """Covariance type of the model.

        Must be one of 'spherical', 'tied', 'diag', 'full'.
        """
        return self._covariance_type

    def _compute_log_likelihood(self, obs):
        return np.array([g.score(obs) for g in self.gmms]).T

    def _generate_sample_from_state(self, state, random_state=None):
        return self.gmms[state].sample(1, random_state=random_state).flatten()

    def _init(self, obs, params='stwmc'):
        super(GMMHMM, self)._init(obs, params=params)

        allobs = np.concatenate(obs, 0)
        for g in self.gmms:
            g.set_params(init_params=params, n_iter=0)
            g.fit(allobs)

    def _initialize_sufficient_statistics(self):
        stats = super(GMMHMM, self)._initialize_sufficient_statistics()
        stats['norm'] = [np.zeros(g.weights_.shape) for g in self.gmms]
        stats['means'] = [np.zeros(np.shape(g.means_)) for g in self.gmms]
        stats['covars'] = [np.zeros(np.shape(g.covars_)) for g in self.gmms]
        return stats

    def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
                                          posteriors, fwdlattice, bwdlattice,
                                          params):
        super(GMMHMM, self)._accumulate_sufficient_statistics(
            stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice,
            params)

        for state, g in enumerate(self.gmms):
            _, lgmm_posteriors = g.eval(obs)
            lgmm_posteriors += np.log(posteriors[:, state][:, np.newaxis]
                                      + np.finfo(np.float).eps)
            gmm_posteriors = np.exp(lgmm_posteriors)
            tmp_gmm = GMM(g.n_components, covariance_type=g._covariance_type)
            n_features = g.means_.shape[1]
            tmp_gmm._set_covars(
                distribute_covar_matrix_to_match_covariance_type(
                    np.eye(n_features), g._covariance_type,
                    g.n_components))
            norm = tmp_gmm._do_mstep(obs, gmm_posteriors, params)

            if np.any(np.isnan(tmp_gmm.covars_)):
                raise ValueError

            stats['norm'][state] += norm
            if 'm' in params:
                stats['means'][state] += tmp_gmm.means_ * norm[:, np.newaxis]
            if 'c' in params:
                if tmp_gmm._covariance_type == 'tied':
                    stats['covars'][state] += tmp_gmm.covars_ * norm.sum()
                else:
                    cvnorm = np.copy(norm)
                    shape = np.ones(tmp_gmm.covars_.ndim)
                    shape[0] = np.shape(tmp_gmm.covars_)[0]
                    cvnorm.shape = shape
                    stats['covars'][state] += tmp_gmm.covars_ * cvnorm

    def _do_mstep(self, stats, params):
        super(GMMHMM, self)._do_mstep(stats, params)
        # All that is left to do is to apply covars_prior to the
        # parameters updated in _accumulate_sufficient_statistics.
        for state, g in enumerate(self.gmms):
            n_features = g.means_.shape[1]
            norm = stats['norm'][state]
            if 'w' in params:
                g.weights_ = normalize(norm)
            if 'm' in params:
                g.means_ = stats['means'][state] / norm[:, np.newaxis]
            if 'c' in params:
                if g._covariance_type == 'tied':
                    g.covars_ = ((stats['covars'][state]
                                 + self.covars_prior * np.eye(n_features))
                                / norm.sum())
                else:
                    cvnorm = np.copy(norm)
                    shape = np.ones(g.covars_.ndim)
                    shape[0] = np.shape(g.covars_)[0]
                    cvnorm.shape = shape
                    if (g._covariance_type in ['spherical', 'diag']):
                        g.covars_ = (stats['covars'][state]
                                    + self.covars_prior) / cvnorm
                    elif g._covariance_type == 'full':
                        eye = np.eye(n_features)
                        g.covars_ = ((stats['covars'][state]
                                     + self.covars_prior * eye[np.newaxis])
                                    / cvnorm)